L. Neiva, Juliane Aparecida Braz Starlino, G. Elias, Arlene Maria Cunha Sarmanho, Vinícius Nicchio Alves
{"title":"工业存储系统连续穿孔立柱:组合式设计方案","authors":"L. Neiva, Juliane Aparecida Braz Starlino, G. Elias, Arlene Maria Cunha Sarmanho, Vinícius Nicchio Alves","doi":"10.7764/rdlc.21.2.204","DOIUrl":null,"url":null,"abstract":"Brazilian standards for design of cold-formed steel (ABNT NBR 14762:2010, 2010) and design of pallet racks (ABNT NBR 15524-2:2007, 2007) have different procedures to determine the strength of columns under axial compression, using different buckling curves. This paper aims to evaluate the efficiency of using cold-formed Brazilian standard buckling design curve instead of the formulations of the pallet-rack design standard to study the use viability of the equations in the calculation procedure for computing the uprights compressive strength. This strength was calculated in four ways: one using the original equations of pallet-rack Brazilian standard, and the other three using adaptations of the buckling curve from the cold-formed steel design standard. A theoretical and numerical procedure based on finite element analysis concerning local, global, and distortional buckling and imperfections was performed. Furthermore, experimental results were also consulted to determine the effective area of studied cross-sections considering the effects of local buckling and the presence of continuous perforations. The results show that the proposed modifications are consistently correlated to the results obtained using the original equations of ABNT NBR 15524, indicating the viability of using the buckling curve of ABNT NBR 14762.","PeriodicalId":54473,"journal":{"name":"Revista de la Construccion","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Industrial storage system continuous perforated uprights: a combined design proposal\",\"authors\":\"L. Neiva, Juliane Aparecida Braz Starlino, G. Elias, Arlene Maria Cunha Sarmanho, Vinícius Nicchio Alves\",\"doi\":\"10.7764/rdlc.21.2.204\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Brazilian standards for design of cold-formed steel (ABNT NBR 14762:2010, 2010) and design of pallet racks (ABNT NBR 15524-2:2007, 2007) have different procedures to determine the strength of columns under axial compression, using different buckling curves. This paper aims to evaluate the efficiency of using cold-formed Brazilian standard buckling design curve instead of the formulations of the pallet-rack design standard to study the use viability of the equations in the calculation procedure for computing the uprights compressive strength. This strength was calculated in four ways: one using the original equations of pallet-rack Brazilian standard, and the other three using adaptations of the buckling curve from the cold-formed steel design standard. A theoretical and numerical procedure based on finite element analysis concerning local, global, and distortional buckling and imperfections was performed. Furthermore, experimental results were also consulted to determine the effective area of studied cross-sections considering the effects of local buckling and the presence of continuous perforations. The results show that the proposed modifications are consistently correlated to the results obtained using the original equations of ABNT NBR 15524, indicating the viability of using the buckling curve of ABNT NBR 14762.\",\"PeriodicalId\":54473,\"journal\":{\"name\":\"Revista de la Construccion\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Revista de la Construccion\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.7764/rdlc.21.2.204\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista de la Construccion","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.7764/rdlc.21.2.204","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Industrial storage system continuous perforated uprights: a combined design proposal
Brazilian standards for design of cold-formed steel (ABNT NBR 14762:2010, 2010) and design of pallet racks (ABNT NBR 15524-2:2007, 2007) have different procedures to determine the strength of columns under axial compression, using different buckling curves. This paper aims to evaluate the efficiency of using cold-formed Brazilian standard buckling design curve instead of the formulations of the pallet-rack design standard to study the use viability of the equations in the calculation procedure for computing the uprights compressive strength. This strength was calculated in four ways: one using the original equations of pallet-rack Brazilian standard, and the other three using adaptations of the buckling curve from the cold-formed steel design standard. A theoretical and numerical procedure based on finite element analysis concerning local, global, and distortional buckling and imperfections was performed. Furthermore, experimental results were also consulted to determine the effective area of studied cross-sections considering the effects of local buckling and the presence of continuous perforations. The results show that the proposed modifications are consistently correlated to the results obtained using the original equations of ABNT NBR 15524, indicating the viability of using the buckling curve of ABNT NBR 14762.
期刊介绍:
The Journal of Construction is aimed at professionals, constructors, academics, researchers, companies, architects, engineers, and anyone who wishes to expand and update their knowledge about construction. We therefore invite all researchers, academics, and professionals to send their contributions for assessment and possible publication in this journal. The publications are free of publication charges.
OBJECTIVES
The objectives of the Journal of Construction are:
1. To disseminate new knowledge in all areas related to construction (Building, Civil Works, Materials, Business, Education, etc.).
2. To provide professionals in the area with material for discussion to refresh and update their knowledge.
3. To disseminate new applied technologies in construction nationally and internationally.
4. To provide national and foreign academics with an internationally endorsed medium in which to share their knowledge and debate the topics raised.