烧结粉煤灰骨料和钢纤维在钢筋混凝土板上受冲孔作用的性能

IF 1.4 4区 工程技术
R. Babu B., T. R
{"title":"烧结粉煤灰骨料和钢纤维在钢筋混凝土板上受冲孔作用的性能","authors":"R. Babu B., T. R","doi":"10.7764/rdlc.21.2.228","DOIUrl":null,"url":null,"abstract":"In this study the optimum replacement percentage of sintered fly ash aggregates in M30 grade of concrete was identified based on 28 days cubical compressive strength value. The optimum replacement of Sintered Fly ash Aggregates (SFA) is 40 %. Before identifying the optimum replacement percentage, the SFAs were tested for suitability test such as crushing strength test, impact test and water absorption test. Further, the optimum 40 % SFAs in concrete is tested for punching shear on the Reinforced Concrete (RC) slabs for a dimension of 1000 mm x 1000 mm x 100 mm. In addition to know the effect of steel fibers in RC slabs subjected to punching. A hook ended steel fibers having an aspect ratio of 55, 80 and 100 is selected and varied by volume of concrete for the punching shear values on RC slabs. The RC slabs concrete contains aspect ratio of steel fibers 55 is varied for 0.25 %, 0.5 %, 0.75 % and 1 % for volume of concrete. In addition to that a constant volume of steel fiber 0.5 % is selected for the aspect ratios of 80 and 100 for the punching shear tests. The punching shear values for the RC slabs shows that partial replacement of SFAs and steel fibers in concrete enhances the punching shear strength. These experimental tested results are compared with finite element programming (ABAQUS) and international codes such as IS 456 and ACI 2011. The experimental punching shear results were higher when compared to international codes.","PeriodicalId":54473,"journal":{"name":"Revista de la Construccion","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Behaviour of sintered fly ash aggregates and steel fibers on reinforced concrete slabs subjected to punching\",\"authors\":\"R. Babu B., T. R\",\"doi\":\"10.7764/rdlc.21.2.228\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study the optimum replacement percentage of sintered fly ash aggregates in M30 grade of concrete was identified based on 28 days cubical compressive strength value. The optimum replacement of Sintered Fly ash Aggregates (SFA) is 40 %. Before identifying the optimum replacement percentage, the SFAs were tested for suitability test such as crushing strength test, impact test and water absorption test. Further, the optimum 40 % SFAs in concrete is tested for punching shear on the Reinforced Concrete (RC) slabs for a dimension of 1000 mm x 1000 mm x 100 mm. In addition to know the effect of steel fibers in RC slabs subjected to punching. A hook ended steel fibers having an aspect ratio of 55, 80 and 100 is selected and varied by volume of concrete for the punching shear values on RC slabs. The RC slabs concrete contains aspect ratio of steel fibers 55 is varied for 0.25 %, 0.5 %, 0.75 % and 1 % for volume of concrete. In addition to that a constant volume of steel fiber 0.5 % is selected for the aspect ratios of 80 and 100 for the punching shear tests. The punching shear values for the RC slabs shows that partial replacement of SFAs and steel fibers in concrete enhances the punching shear strength. These experimental tested results are compared with finite element programming (ABAQUS) and international codes such as IS 456 and ACI 2011. The experimental punching shear results were higher when compared to international codes.\",\"PeriodicalId\":54473,\"journal\":{\"name\":\"Revista de la Construccion\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Revista de la Construccion\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.7764/rdlc.21.2.228\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista de la Construccion","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.7764/rdlc.21.2.228","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

根据28天立方体抗压强度值,确定了M30级混凝土中粉煤灰骨料的最佳替代比例。烧结粉煤灰骨料(SFA)的最佳替代量为40%。在确定最佳替代率之前,对sfa进行了抗压强度试验、冲击试验和吸水试验等适用性试验。此外,在钢筋混凝土(RC)板上进行了尺寸为1000 mm x 1000 mm x 100 mm的冲剪试验,测试了混凝土中最佳的40% sfa。此外,还了解了钢纤维在钢筋混凝土板冲压中的作用。选择长径比为55、80和100的钩端钢纤维,并根据混凝土体积的不同,用于混凝土板的冲孔剪切值。钢筋混凝土板含钢纤维长径比55为0.25%,0.5%,0.75%和1%的混凝土体积变化。此外,在长径比为80和100的情况下,选择恒体积0.5%的钢纤维进行冲剪试验。混凝土的冲剪值表明,部分替换混凝土中的sfa和钢纤维提高了混凝土的冲剪强度。这些试验测试结果与有限元程序(ABAQUS)和国际规范如IS 456和ACI 2011进行了比较。试验冲剪结果高于国际规范。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Behaviour of sintered fly ash aggregates and steel fibers on reinforced concrete slabs subjected to punching
In this study the optimum replacement percentage of sintered fly ash aggregates in M30 grade of concrete was identified based on 28 days cubical compressive strength value. The optimum replacement of Sintered Fly ash Aggregates (SFA) is 40 %. Before identifying the optimum replacement percentage, the SFAs were tested for suitability test such as crushing strength test, impact test and water absorption test. Further, the optimum 40 % SFAs in concrete is tested for punching shear on the Reinforced Concrete (RC) slabs for a dimension of 1000 mm x 1000 mm x 100 mm. In addition to know the effect of steel fibers in RC slabs subjected to punching. A hook ended steel fibers having an aspect ratio of 55, 80 and 100 is selected and varied by volume of concrete for the punching shear values on RC slabs. The RC slabs concrete contains aspect ratio of steel fibers 55 is varied for 0.25 %, 0.5 %, 0.75 % and 1 % for volume of concrete. In addition to that a constant volume of steel fiber 0.5 % is selected for the aspect ratios of 80 and 100 for the punching shear tests. The punching shear values for the RC slabs shows that partial replacement of SFAs and steel fibers in concrete enhances the punching shear strength. These experimental tested results are compared with finite element programming (ABAQUS) and international codes such as IS 456 and ACI 2011. The experimental punching shear results were higher when compared to international codes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Revista de la Construccion
Revista de la Construccion 工程技术-工程:土木
CiteScore
2.30
自引率
21.40%
发文量
0
期刊介绍: The Journal of Construction is aimed at professionals, constructors, academics, researchers, companies, architects, engineers, and anyone who wishes to expand and update their knowledge about construction. We therefore invite all researchers, academics, and professionals to send their contributions for assessment and possible publication in this journal. The publications are free of publication charges. OBJECTIVES The objectives of the Journal of Construction are: 1. To disseminate new knowledge in all areas related to construction (Building, Civil Works, Materials, Business, Education, etc.). 2. To provide professionals in the area with material for discussion to refresh and update their knowledge. 3. To disseminate new applied technologies in construction nationally and internationally. 4. To provide national and foreign academics with an internationally endorsed medium in which to share their knowledge and debate the topics raised.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信