{"title":"岩心与耦合摇摆壁横向荷载特性的数值研究","authors":"A. Sarı, S. Sorosh","doi":"10.7764/rdlc.21.1.36","DOIUrl":null,"url":null,"abstract":"During last few decades, the researchers have developed new structural systems which have no or minor damage after being hit by severe events like earthquake. Development of self-centering wall having alternative energy dissipation mechanisms was one of these achievements. A wide variety of rocking wall systems, such as jointed walls, hybrid walls, precast walls with end columns (PreWEC), and PreWEC core wall systems, are proposed and studied. This paper describes an analytical investigation of the lateral load behavior of two new types of hybrid rocking wall systems. Core rocking wall is achieved by merging four single hybrid rocking walls and coupled rocking wall is accomplished by coupling two rocking walls using embedded reinforced concrete beams. The concept of coupling hybrid rocking walls using embedded reinforced coupling beam is emerged from previous coupled conventional shear walls studies. As single rocking wall system, in coupled and core rocking wall, post-tensioning tendons are used as a mean to provide self-centering force, and mild steel bars are used to dissipate energy. The nonlinear behavior of the wall is due to the gap opening at the base joint. Three-dimensional finite element model of each system was developed. The stress distribution, crack propagation, and critical sections of these systems are investigated. The effect of spalling concrete cover in the toe region due to rocking action is explained. In addition, the reduction in stiffness and lateral load resisting capacity of the systems due to cracks is monitored. Finally, the lateral load behavior of single rocking walls is compared to that of core and coupled rocking wall systems.","PeriodicalId":54473,"journal":{"name":"Revista de la Construccion","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical investigation of the lateral load behavior of core and coupled rocking walls\",\"authors\":\"A. Sarı, S. Sorosh\",\"doi\":\"10.7764/rdlc.21.1.36\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"During last few decades, the researchers have developed new structural systems which have no or minor damage after being hit by severe events like earthquake. Development of self-centering wall having alternative energy dissipation mechanisms was one of these achievements. A wide variety of rocking wall systems, such as jointed walls, hybrid walls, precast walls with end columns (PreWEC), and PreWEC core wall systems, are proposed and studied. This paper describes an analytical investigation of the lateral load behavior of two new types of hybrid rocking wall systems. Core rocking wall is achieved by merging four single hybrid rocking walls and coupled rocking wall is accomplished by coupling two rocking walls using embedded reinforced concrete beams. The concept of coupling hybrid rocking walls using embedded reinforced coupling beam is emerged from previous coupled conventional shear walls studies. As single rocking wall system, in coupled and core rocking wall, post-tensioning tendons are used as a mean to provide self-centering force, and mild steel bars are used to dissipate energy. The nonlinear behavior of the wall is due to the gap opening at the base joint. Three-dimensional finite element model of each system was developed. The stress distribution, crack propagation, and critical sections of these systems are investigated. The effect of spalling concrete cover in the toe region due to rocking action is explained. In addition, the reduction in stiffness and lateral load resisting capacity of the systems due to cracks is monitored. Finally, the lateral load behavior of single rocking walls is compared to that of core and coupled rocking wall systems.\",\"PeriodicalId\":54473,\"journal\":{\"name\":\"Revista de la Construccion\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Revista de la Construccion\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.7764/rdlc.21.1.36\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista de la Construccion","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.7764/rdlc.21.1.36","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Numerical investigation of the lateral load behavior of core and coupled rocking walls
During last few decades, the researchers have developed new structural systems which have no or minor damage after being hit by severe events like earthquake. Development of self-centering wall having alternative energy dissipation mechanisms was one of these achievements. A wide variety of rocking wall systems, such as jointed walls, hybrid walls, precast walls with end columns (PreWEC), and PreWEC core wall systems, are proposed and studied. This paper describes an analytical investigation of the lateral load behavior of two new types of hybrid rocking wall systems. Core rocking wall is achieved by merging four single hybrid rocking walls and coupled rocking wall is accomplished by coupling two rocking walls using embedded reinforced concrete beams. The concept of coupling hybrid rocking walls using embedded reinforced coupling beam is emerged from previous coupled conventional shear walls studies. As single rocking wall system, in coupled and core rocking wall, post-tensioning tendons are used as a mean to provide self-centering force, and mild steel bars are used to dissipate energy. The nonlinear behavior of the wall is due to the gap opening at the base joint. Three-dimensional finite element model of each system was developed. The stress distribution, crack propagation, and critical sections of these systems are investigated. The effect of spalling concrete cover in the toe region due to rocking action is explained. In addition, the reduction in stiffness and lateral load resisting capacity of the systems due to cracks is monitored. Finally, the lateral load behavior of single rocking walls is compared to that of core and coupled rocking wall systems.
期刊介绍:
The Journal of Construction is aimed at professionals, constructors, academics, researchers, companies, architects, engineers, and anyone who wishes to expand and update their knowledge about construction. We therefore invite all researchers, academics, and professionals to send their contributions for assessment and possible publication in this journal. The publications are free of publication charges.
OBJECTIVES
The objectives of the Journal of Construction are:
1. To disseminate new knowledge in all areas related to construction (Building, Civil Works, Materials, Business, Education, etc.).
2. To provide professionals in the area with material for discussion to refresh and update their knowledge.
3. To disseminate new applied technologies in construction nationally and internationally.
4. To provide national and foreign academics with an internationally endorsed medium in which to share their knowledge and debate the topics raised.