Mincerian收益方程的双变量方法

Q4 Economics, Econometrics and Finance
Danúbia R. Cunha, H. Saulo, S. Monsueto, J. A. Divino
{"title":"Mincerian收益方程的双变量方法","authors":"Danúbia R. Cunha, H. Saulo, S. Monsueto, J. A. Divino","doi":"10.5935/0034-7140.20230008","DOIUrl":null,"url":null,"abstract":"This paper estimates bivariate regressions for wages and hours worked as an alternative to the univariate Mincerian earnings equation. The bivariate vector of dependent variables included both common and specific covariates. Using individual level data from the Brazilian National Household Sample Survey (PNAD), the Student t distribution produced the best fit to the data according to information criteria and Mahalanobis distance. The bivariate estimation accounts for correlation between the dependent variables, identifies antagonistic effects from common covariates and allows assuming different bivariate distributions. Education, type of employment contract and geographical region affect wages and hours worked in opposite directions.","PeriodicalId":52490,"journal":{"name":"Revista Brasileira de Economia","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A bivariate approach to the Mincerian earnings equation\",\"authors\":\"Danúbia R. Cunha, H. Saulo, S. Monsueto, J. A. Divino\",\"doi\":\"10.5935/0034-7140.20230008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper estimates bivariate regressions for wages and hours worked as an alternative to the univariate Mincerian earnings equation. The bivariate vector of dependent variables included both common and specific covariates. Using individual level data from the Brazilian National Household Sample Survey (PNAD), the Student t distribution produced the best fit to the data according to information criteria and Mahalanobis distance. The bivariate estimation accounts for correlation between the dependent variables, identifies antagonistic effects from common covariates and allows assuming different bivariate distributions. Education, type of employment contract and geographical region affect wages and hours worked in opposite directions.\",\"PeriodicalId\":52490,\"journal\":{\"name\":\"Revista Brasileira de Economia\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Revista Brasileira de Economia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5935/0034-7140.20230008\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Economics, Econometrics and Finance\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista Brasileira de Economia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5935/0034-7140.20230008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Economics, Econometrics and Finance","Score":null,"Total":0}
引用次数: 0

摘要

danubia R. Cunha, Helton Saulo, Sandro E. Monsueto, Jose A. Divino,天主教大学巴西利亚,巴西利亚,巴西统计局,巴西利亚大学,巴西利亚,巴西FACE,联邦大学goias, goiania,巴西摘要。本文提出了一种替代经典的单变量明瑟方程估计的方法,提出了收入和工作时间的双变量回归估计。该模型包括普通协变量和因变量双变量向量的特定协变量。这些估计使用的数据来自2013年至2015年的全国家庭抽样调查(PNAD)。在使用的分布中,信息准则和马氏距离表明,t分布最适合单变量和双变量模型的数据。双变量回归的优点包括因变量之间的相关结构建模,识别来自共同协变量对收入和工作时间的对立效应,以及灵活地假设不同的双变量分布。在得到的结果中,值得注意的是,在双变量回归中,代表教育、劳动合同类型和地理位置的协变量对收入和工作时间表现出不同的信号和大小。因此,使用双变量模型成为传统上用于估计明瑟产量方程的一个重要的替代方法。关键词:双变量分布;minceriana方程;收入;工作时间;二元回归。招式。这纸proposes估计bivariate regressions收益和小时工作的另一种古典univariate Mincerian收益的估计方程。估计模型包括因变量双变量向量的共同协变量和具体协变量,以及巴西经济的使用数据,这些数据来自2013年至2015年的全国家庭抽样调查(PNAD)。在使用的分布中,信息标准和马哈拉诺比斯距离表明,对于单变量和双变量情况,学生的分布最适合数据。双变量回归的优点包括因变量之间具有相关结构的估计,识别共同协变量对收入和工作时间的拮抗效应,以及假设不同双变量分布的灵活性。结果表明,收入与工作时间之间存在正的、统计上显著的相关性。此外,协变教育、就业合同类型和地理位置对收入和工作时间的双变量回归估计系数有不同的信号和幅度。因此,双变量法是传统上应用于Mincerian收益方程的单变量估计的一个重要替代方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A bivariate approach to the Mincerian earnings equation
This paper estimates bivariate regressions for wages and hours worked as an alternative to the univariate Mincerian earnings equation. The bivariate vector of dependent variables included both common and specific covariates. Using individual level data from the Brazilian National Household Sample Survey (PNAD), the Student t distribution produced the best fit to the data according to information criteria and Mahalanobis distance. The bivariate estimation accounts for correlation between the dependent variables, identifies antagonistic effects from common covariates and allows assuming different bivariate distributions. Education, type of employment contract and geographical region affect wages and hours worked in opposite directions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Revista Brasileira de Economia
Revista Brasileira de Economia Economics, Econometrics and Finance-Economics, Econometrics and Finance (all)
CiteScore
0.40
自引率
0.00%
发文量
0
审稿时长
20 weeks
期刊介绍: A Revista Brasileira de Economia (RBE) é a mais antiga publicação de Economia do Brasil, e a segunda mais antiga da América Latina. Seus fundadores foram Arizio de Viana, o primeiro editor, e Eugênio Gudin, um dos mais influentes economistas da história brasileira. A RBE foi apresentada no seu primeiro número pelo professor Luiz Simões Lopes, em uma Introdução que poderia constar ainda hoje de qualquer número da revista.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信