{"title":"含时哈密顿量Schrödinger方程的Cauchy问题","authors":"M. Cicognani","doi":"10.6092/ISSN.2240-2829/4717","DOIUrl":null,"url":null,"abstract":"We consider the Cauchy problem for a Schrodinger equation with an Hamiltonian depending also on the time variable and that may vanish at t = 0. We find optimal Levi conditions for well-posedness in Sobolev and Gevrey spaces.","PeriodicalId":41199,"journal":{"name":"Bruno Pini Mathematical Analysis Seminar","volume":"5 1","pages":"31-44"},"PeriodicalIF":0.2000,"publicationDate":"2014-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Cauchy Problem for Schrödinger Equations with Time-Dependent Hamiltonian\",\"authors\":\"M. Cicognani\",\"doi\":\"10.6092/ISSN.2240-2829/4717\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the Cauchy problem for a Schrodinger equation with an Hamiltonian depending also on the time variable and that may vanish at t = 0. We find optimal Levi conditions for well-posedness in Sobolev and Gevrey spaces.\",\"PeriodicalId\":41199,\"journal\":{\"name\":\"Bruno Pini Mathematical Analysis Seminar\",\"volume\":\"5 1\",\"pages\":\"31-44\"},\"PeriodicalIF\":0.2000,\"publicationDate\":\"2014-12-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bruno Pini Mathematical Analysis Seminar\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.6092/ISSN.2240-2829/4717\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bruno Pini Mathematical Analysis Seminar","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.6092/ISSN.2240-2829/4717","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
The Cauchy Problem for Schrödinger Equations with Time-Dependent Hamiltonian
We consider the Cauchy problem for a Schrodinger equation with an Hamiltonian depending also on the time variable and that may vanish at t = 0. We find optimal Levi conditions for well-posedness in Sobolev and Gevrey spaces.