双球性质:第二步卡诺群的概述和情况

IF 0.2 Q4 MATHEMATICS
G. Tralli
{"title":"双球性质:第二步卡诺群的概述和情况","authors":"G. Tralli","doi":"10.6092/ISSN.2240-2829/3417","DOIUrl":null,"url":null,"abstract":"We investigate the notion of the so-called Double Ball Property, which concerns the nonnegative sub-solutions of some differential operators. Thanks to the axiomatic approach developed in [6], this is an important tool in order to solve the Krylov-Safonov's Harnack inequality problem for this kind of operators. In particular, we are interested in linear second order horizontally-elliptic operators in non-divergence formand with measurable coefficients. In the setting of homogeneous Carnot groups, we would like to stress the relation between the Double Ball Property and a kind of solvability of the Dirichlet problem for the operator in the exterior of some homogeneous balls. We present a recent result obtained in [15], where the double ball property has been proved in a generic Carnot group of step two.","PeriodicalId":41199,"journal":{"name":"Bruno Pini Mathematical Analysis Seminar","volume":"3 1","pages":"33-47"},"PeriodicalIF":0.2000,"publicationDate":"2012-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Double ball property: an overview and the case of step two Carnot groups\",\"authors\":\"G. Tralli\",\"doi\":\"10.6092/ISSN.2240-2829/3417\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We investigate the notion of the so-called Double Ball Property, which concerns the nonnegative sub-solutions of some differential operators. Thanks to the axiomatic approach developed in [6], this is an important tool in order to solve the Krylov-Safonov's Harnack inequality problem for this kind of operators. In particular, we are interested in linear second order horizontally-elliptic operators in non-divergence formand with measurable coefficients. In the setting of homogeneous Carnot groups, we would like to stress the relation between the Double Ball Property and a kind of solvability of the Dirichlet problem for the operator in the exterior of some homogeneous balls. We present a recent result obtained in [15], where the double ball property has been proved in a generic Carnot group of step two.\",\"PeriodicalId\":41199,\"journal\":{\"name\":\"Bruno Pini Mathematical Analysis Seminar\",\"volume\":\"3 1\",\"pages\":\"33-47\"},\"PeriodicalIF\":0.2000,\"publicationDate\":\"2012-12-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bruno Pini Mathematical Analysis Seminar\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.6092/ISSN.2240-2829/3417\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bruno Pini Mathematical Analysis Seminar","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.6092/ISSN.2240-2829/3417","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了所谓双球性质的概念,它涉及到一些微分算子的非负子解。由于[6]中提出的公理化方法,这是解决这类算子的Krylov-Safonov的Harnack不等式问题的一个重要工具。特别地,我们对具有可测量系数的非散度形式的线性二阶水平椭圆算子感兴趣。在齐次卡诺群的背景下,着重讨论双球性质与一类齐次球外算子的Dirichlet问题的可解性之间的关系。本文给出了[15]中最近得到的一个结果,证明了步二的一般卡诺群的双球性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Double ball property: an overview and the case of step two Carnot groups
We investigate the notion of the so-called Double Ball Property, which concerns the nonnegative sub-solutions of some differential operators. Thanks to the axiomatic approach developed in [6], this is an important tool in order to solve the Krylov-Safonov's Harnack inequality problem for this kind of operators. In particular, we are interested in linear second order horizontally-elliptic operators in non-divergence formand with measurable coefficients. In the setting of homogeneous Carnot groups, we would like to stress the relation between the Double Ball Property and a kind of solvability of the Dirichlet problem for the operator in the exterior of some homogeneous balls. We present a recent result obtained in [15], where the double ball property has been proved in a generic Carnot group of step two.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.30
自引率
0.00%
发文量
0
审稿时长
15 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信