{"title":"一种解决定量等距不平等的新方法","authors":"G. Leonardi","doi":"10.6092/ISSN.2240-2829/2671","DOIUrl":null,"url":null,"abstract":"We introduce a new variational method for studying geometric and functional inequalities with quantitative terms. In the context of isoperimetric-type inequalities, this method (called Selection Principle) is based on a penalization technique combined with the regularity theory of quasiminimizers of the perimeter functional. In this seminar we present the method and describe two remarkable applications. The rst one is a new proof of the sharp quantitative isoperimetric inequality in Rn. The second one is the proof of a conjecture posed by Hall about the optimal constant in the quantitative isoperimetric inequality in R2, in the small asymmetry regime.","PeriodicalId":41199,"journal":{"name":"Bruno Pini Mathematical Analysis Seminar","volume":"2 1","pages":"1-15"},"PeriodicalIF":0.2000,"publicationDate":"2011-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Un nuovo approccio alle disuguaglianze isoperimetriche quantitative\",\"authors\":\"G. Leonardi\",\"doi\":\"10.6092/ISSN.2240-2829/2671\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce a new variational method for studying geometric and functional inequalities with quantitative terms. In the context of isoperimetric-type inequalities, this method (called Selection Principle) is based on a penalization technique combined with the regularity theory of quasiminimizers of the perimeter functional. In this seminar we present the method and describe two remarkable applications. The rst one is a new proof of the sharp quantitative isoperimetric inequality in Rn. The second one is the proof of a conjecture posed by Hall about the optimal constant in the quantitative isoperimetric inequality in R2, in the small asymmetry regime.\",\"PeriodicalId\":41199,\"journal\":{\"name\":\"Bruno Pini Mathematical Analysis Seminar\",\"volume\":\"2 1\",\"pages\":\"1-15\"},\"PeriodicalIF\":0.2000,\"publicationDate\":\"2011-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bruno Pini Mathematical Analysis Seminar\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.6092/ISSN.2240-2829/2671\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bruno Pini Mathematical Analysis Seminar","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.6092/ISSN.2240-2829/2671","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
Un nuovo approccio alle disuguaglianze isoperimetriche quantitative
We introduce a new variational method for studying geometric and functional inequalities with quantitative terms. In the context of isoperimetric-type inequalities, this method (called Selection Principle) is based on a penalization technique combined with the regularity theory of quasiminimizers of the perimeter functional. In this seminar we present the method and describe two remarkable applications. The rst one is a new proof of the sharp quantitative isoperimetric inequality in Rn. The second one is the proof of a conjecture posed by Hall about the optimal constant in the quantitative isoperimetric inequality in R2, in the small asymmetry regime.