CR-Yamabe方程的存在性结果

IF 0.2 Q4 MATHEMATICS
Vittorio Martino
{"title":"CR-Yamabe方程的存在性结果","authors":"Vittorio Martino","doi":"10.6092/ISSN.2240-2829/4017","DOIUrl":null,"url":null,"abstract":"In this note we will prove that the CR-Yamabe equation has infinitely many changing-sign solutions. The problem is variational but the associated functional does not satisfy the Palais-Smale compactness condition; by mean of a suitable group action we will define a subspace on which we can apply the minimax argument of Ambrosetti-Rabinowitz. The result solves a question left open from the classification results of positive solutions by Jerison-Lee in the '80s.","PeriodicalId":41199,"journal":{"name":"Bruno Pini Mathematical Analysis Seminar","volume":"4 1","pages":"38-46"},"PeriodicalIF":0.2000,"publicationDate":"2013-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Existence result for the CR-Yamabe equation\",\"authors\":\"Vittorio Martino\",\"doi\":\"10.6092/ISSN.2240-2829/4017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this note we will prove that the CR-Yamabe equation has infinitely many changing-sign solutions. The problem is variational but the associated functional does not satisfy the Palais-Smale compactness condition; by mean of a suitable group action we will define a subspace on which we can apply the minimax argument of Ambrosetti-Rabinowitz. The result solves a question left open from the classification results of positive solutions by Jerison-Lee in the '80s.\",\"PeriodicalId\":41199,\"journal\":{\"name\":\"Bruno Pini Mathematical Analysis Seminar\",\"volume\":\"4 1\",\"pages\":\"38-46\"},\"PeriodicalIF\":0.2000,\"publicationDate\":\"2013-12-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bruno Pini Mathematical Analysis Seminar\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.6092/ISSN.2240-2829/4017\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bruno Pini Mathematical Analysis Seminar","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.6092/ISSN.2240-2829/4017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文将证明CR-Yamabe方程有无穷多个变号解。问题是变分的,但相关的泛函不满足palais - small紧性条件;通过适当的群作用,我们定义了一个子空间,在该子空间上我们可以应用Ambrosetti-Rabinowitz的极大极小论证。这一结果解决了80年代Jerison-Lee对正解的分类结果留下的一个问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Existence result for the CR-Yamabe equation
In this note we will prove that the CR-Yamabe equation has infinitely many changing-sign solutions. The problem is variational but the associated functional does not satisfy the Palais-Smale compactness condition; by mean of a suitable group action we will define a subspace on which we can apply the minimax argument of Ambrosetti-Rabinowitz. The result solves a question left open from the classification results of positive solutions by Jerison-Lee in the '80s.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.30
自引率
0.00%
发文量
0
审稿时长
15 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信