在方程det Du = f上,没有符号假设

IF 0.2 Q4 MATHEMATICS
G. Cupini
{"title":"在方程det Du = f上,没有符号假设","authors":"G. Cupini","doi":"10.6092/ISSN.2240-2829/2258","DOIUrl":null,"url":null,"abstract":"We consider the nonlinear problem det?u (x) = f (x) x ? u (x) = x x ? ? where k ? 1 is an integer, is a bounded smooth domain in Rn and f ? Ck ???? satisfies Z f (x) dx = meas . The positivity of f is a standard assumption in the literature. In a recent joint paper with B.Dacorogna and O.Kneuss (EPFL) we prove the existence of a solution u ? Ck ???? ;Rn with no assumptions on the sign of f. Here we state this theorem together with some related results and we outline the main features of the problem.","PeriodicalId":41199,"journal":{"name":"Bruno Pini Mathematical Analysis Seminar","volume":"1 1","pages":""},"PeriodicalIF":0.2000,"publicationDate":"2010-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sull’equazione det Du = f senza ipotesi di segno\",\"authors\":\"G. Cupini\",\"doi\":\"10.6092/ISSN.2240-2829/2258\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the nonlinear problem det?u (x) = f (x) x ? u (x) = x x ? ? where k ? 1 is an integer, is a bounded smooth domain in Rn and f ? Ck ???? satisfies Z f (x) dx = meas . The positivity of f is a standard assumption in the literature. In a recent joint paper with B.Dacorogna and O.Kneuss (EPFL) we prove the existence of a solution u ? Ck ???? ;Rn with no assumptions on the sign of f. Here we state this theorem together with some related results and we outline the main features of the problem.\",\"PeriodicalId\":41199,\"journal\":{\"name\":\"Bruno Pini Mathematical Analysis Seminar\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.2000,\"publicationDate\":\"2010-12-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bruno Pini Mathematical Analysis Seminar\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.6092/ISSN.2240-2829/2258\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bruno Pini Mathematical Analysis Seminar","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.6092/ISSN.2240-2829/2258","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑非线性问题det?U (x) = f (x) x ?U (x) = x ?? k在哪里?1是一个整数,是Rn和f中的有界光滑定义域吗?Ck ? ?满足zf (x) dx =均值。f的正性是文献中的一个标准假设。在最近与B.Dacorogna和O.Kneuss (EPFL)的一篇联合论文中,我们证明了u ?Ck ? ?在这里,我们陈述了这个定理以及一些相关的结果,并概述了这个问题的主要特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sull’equazione det Du = f senza ipotesi di segno
We consider the nonlinear problem det?u (x) = f (x) x ? u (x) = x x ? ? where k ? 1 is an integer, is a bounded smooth domain in Rn and f ? Ck ???? satisfies Z f (x) dx = meas . The positivity of f is a standard assumption in the literature. In a recent joint paper with B.Dacorogna and O.Kneuss (EPFL) we prove the existence of a solution u ? Ck ???? ;Rn with no assumptions on the sign of f. Here we state this theorem together with some related results and we outline the main features of the problem.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.30
自引率
0.00%
发文量
0
审稿时长
15 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信