{"title":"在方程det Du = f上,没有符号假设","authors":"G. Cupini","doi":"10.6092/ISSN.2240-2829/2258","DOIUrl":null,"url":null,"abstract":"We consider the nonlinear problem det?u (x) = f (x) x ? u (x) = x x ? ? where k ? 1 is an integer, is a bounded smooth domain in Rn and f ? Ck ???? satisfies Z f (x) dx = meas . The positivity of f is a standard assumption in the literature. In a recent joint paper with B.Dacorogna and O.Kneuss (EPFL) we prove the existence of a solution u ? Ck ???? ;Rn with no assumptions on the sign of f. Here we state this theorem together with some related results and we outline the main features of the problem.","PeriodicalId":41199,"journal":{"name":"Bruno Pini Mathematical Analysis Seminar","volume":"1 1","pages":""},"PeriodicalIF":0.2000,"publicationDate":"2010-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sull’equazione det Du = f senza ipotesi di segno\",\"authors\":\"G. Cupini\",\"doi\":\"10.6092/ISSN.2240-2829/2258\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the nonlinear problem det?u (x) = f (x) x ? u (x) = x x ? ? where k ? 1 is an integer, is a bounded smooth domain in Rn and f ? Ck ???? satisfies Z f (x) dx = meas . The positivity of f is a standard assumption in the literature. In a recent joint paper with B.Dacorogna and O.Kneuss (EPFL) we prove the existence of a solution u ? Ck ???? ;Rn with no assumptions on the sign of f. Here we state this theorem together with some related results and we outline the main features of the problem.\",\"PeriodicalId\":41199,\"journal\":{\"name\":\"Bruno Pini Mathematical Analysis Seminar\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.2000,\"publicationDate\":\"2010-12-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bruno Pini Mathematical Analysis Seminar\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.6092/ISSN.2240-2829/2258\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bruno Pini Mathematical Analysis Seminar","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.6092/ISSN.2240-2829/2258","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
我们考虑非线性问题det?U (x) = f (x) x ?U (x) = x ?? k在哪里?1是一个整数,是Rn和f中的有界光滑定义域吗?Ck ? ?满足zf (x) dx =均值。f的正性是文献中的一个标准假设。在最近与B.Dacorogna和O.Kneuss (EPFL)的一篇联合论文中,我们证明了u ?Ck ? ?在这里,我们陈述了这个定理以及一些相关的结果,并概述了这个问题的主要特征。
We consider the nonlinear problem det?u (x) = f (x) x ? u (x) = x x ? ? where k ? 1 is an integer, is a bounded smooth domain in Rn and f ? Ck ???? satisfies Z f (x) dx = meas . The positivity of f is a standard assumption in the literature. In a recent joint paper with B.Dacorogna and O.Kneuss (EPFL) we prove the existence of a solution u ? Ck ???? ;Rn with no assumptions on the sign of f. Here we state this theorem together with some related results and we outline the main features of the problem.