分数阶导数的退化微分问题

IF 0.2 Q4 MATHEMATICS
M. Horani, A. Favini
{"title":"分数阶导数的退化微分问题","authors":"M. Horani, A. Favini","doi":"10.6092/ISSN.2240-2829/12300","DOIUrl":null,"url":null,"abstract":"We describe an extension of previous results on degenerate abstract equations described by Favini and Yagi in their monograph cited in the references.This allows us to study degenerate differential equations with fractional derivative in time. Both direct and relative inverse problems are studied. Finally, various applications to degenerate partial differential equations are described.","PeriodicalId":41199,"journal":{"name":"Bruno Pini Mathematical Analysis Seminar","volume":"11 1","pages":"47-68"},"PeriodicalIF":0.2000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Degenerate differential problems with fractional derivatives\",\"authors\":\"M. Horani, A. Favini\",\"doi\":\"10.6092/ISSN.2240-2829/12300\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We describe an extension of previous results on degenerate abstract equations described by Favini and Yagi in their monograph cited in the references.This allows us to study degenerate differential equations with fractional derivative in time. Both direct and relative inverse problems are studied. Finally, various applications to degenerate partial differential equations are described.\",\"PeriodicalId\":41199,\"journal\":{\"name\":\"Bruno Pini Mathematical Analysis Seminar\",\"volume\":\"11 1\",\"pages\":\"47-68\"},\"PeriodicalIF\":0.2000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bruno Pini Mathematical Analysis Seminar\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.6092/ISSN.2240-2829/12300\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bruno Pini Mathematical Analysis Seminar","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.6092/ISSN.2240-2829/12300","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们描述了在参考文献中引用的Favini和Yagi的专著中描述的退化抽象方程的先前结果的扩展。这使我们能够研究具有分数阶导数的退化微分方程。研究了直接反问题和相对反问题。最后,介绍了退化偏微分方程的各种应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Degenerate differential problems with fractional derivatives
We describe an extension of previous results on degenerate abstract equations described by Favini and Yagi in their monograph cited in the references.This allows us to study degenerate differential equations with fractional derivative in time. Both direct and relative inverse problems are studied. Finally, various applications to degenerate partial differential equations are described.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.30
自引率
0.00%
发文量
0
审稿时长
15 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信