{"title":"分数阶拉普拉斯算子与黑森算子的若干关系","authors":"F. Ferrari","doi":"10.6092/ISSN.2240-2829/2668","DOIUrl":null,"url":null,"abstract":"After recalling the many representations of the fractional Laplace operator and some of its important properties, some recent results (proved in a joint work with Bruno Franchi and Igor Verbitsky) about the relations between the k-Hessian energy of the k-Hessian operator of a k convex function vanishing at infinity and the fractional energy of a particular fractional operator will be introduced. Moreover we shall recall an integration by parts formula for the fractional Laplace operator giving a new simpler proof.","PeriodicalId":41199,"journal":{"name":"Bruno Pini Mathematical Analysis Seminar","volume":"2 1","pages":""},"PeriodicalIF":0.2000,"publicationDate":"2011-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Some relations between fractional Laplace operators and Hessian operators\",\"authors\":\"F. Ferrari\",\"doi\":\"10.6092/ISSN.2240-2829/2668\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"After recalling the many representations of the fractional Laplace operator and some of its important properties, some recent results (proved in a joint work with Bruno Franchi and Igor Verbitsky) about the relations between the k-Hessian energy of the k-Hessian operator of a k convex function vanishing at infinity and the fractional energy of a particular fractional operator will be introduced. Moreover we shall recall an integration by parts formula for the fractional Laplace operator giving a new simpler proof.\",\"PeriodicalId\":41199,\"journal\":{\"name\":\"Bruno Pini Mathematical Analysis Seminar\",\"volume\":\"2 1\",\"pages\":\"\"},\"PeriodicalIF\":0.2000,\"publicationDate\":\"2011-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bruno Pini Mathematical Analysis Seminar\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.6092/ISSN.2240-2829/2668\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bruno Pini Mathematical Analysis Seminar","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.6092/ISSN.2240-2829/2668","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
Some relations between fractional Laplace operators and Hessian operators
After recalling the many representations of the fractional Laplace operator and some of its important properties, some recent results (proved in a joint work with Bruno Franchi and Igor Verbitsky) about the relations between the k-Hessian energy of the k-Hessian operator of a k convex function vanishing at infinity and the fractional energy of a particular fractional operator will be introduced. Moreover we shall recall an integration by parts formula for the fractional Laplace operator giving a new simpler proof.