中截尾寿命数据分析的半参数回归模型

IF 1.6 Q1 STATISTICS & PROBABILITY
S. Jammalamadaka, S. Prasad, P. G. Sankaran
{"title":"中截尾寿命数据分析的半参数回归模型","authors":"S. Jammalamadaka, S. Prasad, P. G. Sankaran","doi":"10.6092/ISSN.1973-2201/6281","DOIUrl":null,"url":null,"abstract":"Middle censoring introduced by Jammalamadaka and Mangalam (2003), refers to data arising in situations where the exact lifetime becomes unobservable if it falls within a random censoring interval, otherwise it is observable. In the present paper we propose a semi-parametric regression model for such lifetime data, arising from an unknown population and subject to middle censoring. We provide an algorithm to find the nonparametric maximum likelihood estimator (NPMLE) for regression parameters and the survival function. The consistency of the estimators are established. We report simulation studies to assess the finite sample properties of the estimators. We then analyze a real life data on survival times for diabetic patients studied by Lee et al. (1988).","PeriodicalId":45117,"journal":{"name":"Statistica","volume":"76 1","pages":"27-40"},"PeriodicalIF":1.6000,"publicationDate":"2016-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A SEMI-PARAMETRIC REGRESSION MODEL FOR ANALYSIS OF MIDDLE CENSORED LIFETIME DATA\",\"authors\":\"S. Jammalamadaka, S. Prasad, P. G. Sankaran\",\"doi\":\"10.6092/ISSN.1973-2201/6281\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Middle censoring introduced by Jammalamadaka and Mangalam (2003), refers to data arising in situations where the exact lifetime becomes unobservable if it falls within a random censoring interval, otherwise it is observable. In the present paper we propose a semi-parametric regression model for such lifetime data, arising from an unknown population and subject to middle censoring. We provide an algorithm to find the nonparametric maximum likelihood estimator (NPMLE) for regression parameters and the survival function. The consistency of the estimators are established. We report simulation studies to assess the finite sample properties of the estimators. We then analyze a real life data on survival times for diabetic patients studied by Lee et al. (1988).\",\"PeriodicalId\":45117,\"journal\":{\"name\":\"Statistica\",\"volume\":\"76 1\",\"pages\":\"27-40\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2016-03-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.6092/ISSN.1973-2201/6281\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.6092/ISSN.1973-2201/6281","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 3

摘要

Jammalamadaka和Mangalam(2003)提出的中间审查是指,如果数据处于一个随机的审查区间内,那么它的确切寿命就变得不可观察,否则它是可观察的。在本文中,我们提出了这种寿命数据的半参数回归模型,这些数据来自未知的总体,并受到中间审查。我们提供了一种求回归参数和生存函数的非参数极大似然估计的算法。建立了估计量的相合性。我们报告模拟研究,以评估估计器的有限样本性质。然后,我们分析了Lee等人(1988)研究的糖尿病患者生存时间的真实生活数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A SEMI-PARAMETRIC REGRESSION MODEL FOR ANALYSIS OF MIDDLE CENSORED LIFETIME DATA
Middle censoring introduced by Jammalamadaka and Mangalam (2003), refers to data arising in situations where the exact lifetime becomes unobservable if it falls within a random censoring interval, otherwise it is observable. In the present paper we propose a semi-parametric regression model for such lifetime data, arising from an unknown population and subject to middle censoring. We provide an algorithm to find the nonparametric maximum likelihood estimator (NPMLE) for regression parameters and the survival function. The consistency of the estimators are established. We report simulation studies to assess the finite sample properties of the estimators. We then analyze a real life data on survival times for diabetic patients studied by Lee et al. (1988).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Statistica
Statistica STATISTICS & PROBABILITY-
CiteScore
1.70
自引率
0.00%
发文量
0
审稿时长
10 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信