多项式幂和的复合值

Q4 Mathematics
C. Fuchs, C. Karolus
{"title":"多项式幂和的复合值","authors":"C. Fuchs, C. Karolus","doi":"10.5802/ambp.380","DOIUrl":null,"url":null,"abstract":"Let (Gn(x))n=0 be a d-th order linear recurrence sequence having polynomial characteristic roots, one of which has degree strictly greater than the others. Moreover, letm ≥ 2 be a given integer. We ask for n ∈ N such that the equation Gn(x) = g ◦ h is satisfied for a polynomial g ∈ C[x] with deg g = m and some polynomial h ∈ C[x]with degh > 1. We prove that for all but finitely many n these decompositions can be described in “finite terms” coming from a generic decomposition parameterized by an algebraic variety. All data in this description will be shown to be effectively computable.","PeriodicalId":52347,"journal":{"name":"Annales Mathematiques Blaise Pascal","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Composite values of polynomial power sums\",\"authors\":\"C. Fuchs, C. Karolus\",\"doi\":\"10.5802/ambp.380\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let (Gn(x))n=0 be a d-th order linear recurrence sequence having polynomial characteristic roots, one of which has degree strictly greater than the others. Moreover, letm ≥ 2 be a given integer. We ask for n ∈ N such that the equation Gn(x) = g ◦ h is satisfied for a polynomial g ∈ C[x] with deg g = m and some polynomial h ∈ C[x]with degh > 1. We prove that for all but finitely many n these decompositions can be described in “finite terms” coming from a generic decomposition parameterized by an algebraic variety. All data in this description will be shown to be effectively computable.\",\"PeriodicalId\":52347,\"journal\":{\"name\":\"Annales Mathematiques Blaise Pascal\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annales Mathematiques Blaise Pascal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5802/ambp.380\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales Mathematiques Blaise Pascal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5802/ambp.380","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 1

摘要

设(Gn(x))n=0是一个具有多项式特征根的d阶线性递归序列,其中一个特征根的度数严格大于其他特征根。且令m≥2为给定整数。我们要求n∈n使得方程Gn(x) = g◦h对于一个多项式g∈C[x],其度g = m和某个多项式h∈C[x],其度> 1是满足的。我们证明了除了有限个n外,所有这些分解都可以用由代数变量参数化的一般分解的“有限项”来描述。本描述中的所有数据都将显示为可有效计算的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Composite values of polynomial power sums
Let (Gn(x))n=0 be a d-th order linear recurrence sequence having polynomial characteristic roots, one of which has degree strictly greater than the others. Moreover, letm ≥ 2 be a given integer. We ask for n ∈ N such that the equation Gn(x) = g ◦ h is satisfied for a polynomial g ∈ C[x] with deg g = m and some polynomial h ∈ C[x]with degh > 1. We prove that for all but finitely many n these decompositions can be described in “finite terms” coming from a generic decomposition parameterized by an algebraic variety. All data in this description will be shown to be effectively computable.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annales Mathematiques Blaise Pascal
Annales Mathematiques Blaise Pascal Mathematics-Algebra and Number Theory
CiteScore
0.50
自引率
0.00%
发文量
9
审稿时长
30 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信