{"title":"纺织品升华印花:黑色印花织物的GLCM印花斑纹评价","authors":"Emilija Toshikj, Bojan Prangoski","doi":"10.5755/j02.ms.32465","DOIUrl":null,"url":null,"abstract":"The white fabric was printed with different printing temperatures and pressing times using the sublimation printing process in solid-tone black color with a 100 % total ink limiting level. Non-uniformity of the print was examined through print mottle determined by grey level co-occurrence matrix (GLCM) image processing method. Color strength of print was also determined by reflectance spectrophotometry. The print with the lower print mottle was obtained at a printing temperature of 190 °C at a longer pressing time of 120 s or at an increased printing temperature of up to 210 °C at the reduced pressing time of 60 s. The print with the lower print mottle had the lowest entropy, contrast, and correlation and the highest energy and homogeneity. The print with a higher color strength was accompanied by decreased print mottle. Choosing a suitable printing temperature and pressing time for sublimation printing is helpful in achieving print with low print mottle and high color strength and balancing cost, price, and price.","PeriodicalId":18298,"journal":{"name":"Materials Science-medziagotyra","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2023-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Textile Sublimation Printing: GLCM Print Mottle Assessment of Black Printed Fabric\",\"authors\":\"Emilija Toshikj, Bojan Prangoski\",\"doi\":\"10.5755/j02.ms.32465\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The white fabric was printed with different printing temperatures and pressing times using the sublimation printing process in solid-tone black color with a 100 % total ink limiting level. Non-uniformity of the print was examined through print mottle determined by grey level co-occurrence matrix (GLCM) image processing method. Color strength of print was also determined by reflectance spectrophotometry. The print with the lower print mottle was obtained at a printing temperature of 190 °C at a longer pressing time of 120 s or at an increased printing temperature of up to 210 °C at the reduced pressing time of 60 s. The print with the lower print mottle had the lowest entropy, contrast, and correlation and the highest energy and homogeneity. The print with a higher color strength was accompanied by decreased print mottle. Choosing a suitable printing temperature and pressing time for sublimation printing is helpful in achieving print with low print mottle and high color strength and balancing cost, price, and price.\",\"PeriodicalId\":18298,\"journal\":{\"name\":\"Materials Science-medziagotyra\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-01-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Science-medziagotyra\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.5755/j02.ms.32465\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Science-medziagotyra","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.5755/j02.ms.32465","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Textile Sublimation Printing: GLCM Print Mottle Assessment of Black Printed Fabric
The white fabric was printed with different printing temperatures and pressing times using the sublimation printing process in solid-tone black color with a 100 % total ink limiting level. Non-uniformity of the print was examined through print mottle determined by grey level co-occurrence matrix (GLCM) image processing method. Color strength of print was also determined by reflectance spectrophotometry. The print with the lower print mottle was obtained at a printing temperature of 190 °C at a longer pressing time of 120 s or at an increased printing temperature of up to 210 °C at the reduced pressing time of 60 s. The print with the lower print mottle had the lowest entropy, contrast, and correlation and the highest energy and homogeneity. The print with a higher color strength was accompanied by decreased print mottle. Choosing a suitable printing temperature and pressing time for sublimation printing is helpful in achieving print with low print mottle and high color strength and balancing cost, price, and price.
期刊介绍:
It covers the fields of materials science concerning with the traditional engineering materials as well as advanced materials and technologies aiming at the implementation and industry applications. The variety of materials under consideration, contributes to the cooperation of scientists working in applied physics, chemistry, materials science and different fields of engineering.