探讨改善自然通风住宅热舒适性能的被动设计策略

Q2 Engineering
K. Rana
{"title":"探讨改善自然通风住宅热舒适性能的被动设计策略","authors":"K. Rana","doi":"10.5755/j01.sace.29.2.29256","DOIUrl":null,"url":null,"abstract":"Passive design integrates a wide range of climate-based strategies to increase occupant thermal comfort and minimise the need for mechanical systems for heating and cooling. The aim of this study was to improve the thermal comfort performance in a naturally ventilated residence through the identification and evaluation of the best set of passive design strategies. A two-storey residence located in Washington, United States with a temperate climate was selected as the case study residence. A reference simulation model was developed by replicating only the orientation and massing of the case study residence, while certain assumptions were made for other building characteristics. Thermal comfort performance analysis was conducted in the DesignBuilder software. A set of design strategies were introduced as interventions followed by simulation runs to efficiently track progress. From the reference simulation model to the final intervention model, a 50% reduction in the annual discomfort hours was anticipated in the five selected zones of the residence. Following the integration of four major interventions, the target discomfort hours were met in three zones—library, bedroom 1 and bedroom 2, with 53.03%, 60.42% and 58.94% reduction in discomfort hours, respectively. The two remaining zones—living and lounge also had a notable improvement with a reduction of 43.93% and 45.99%, respectively. The successful design strategies included—incorporation of triple glazed, low-emissivity and argon filled openings with wooden frames; integration of overhangs in south-facing windows, minor reduction of openings in the east and west façade, and addition of blinds for window shading; and use of an energy code standard construction for the building components and further addition of insulation in the building envelope. The most effective intervention was the customisation of the window operation schedule based on seasonal air temperature differences to optimise natural ventilation. This study demonstrated that occupant thermal comfort can be significantly improved throughout the year with the appropriate use of passive heating and cooling strategies, thereby reducing energy consumption and the environmental impact of buildings.","PeriodicalId":36795,"journal":{"name":"Journal of Sustainable Architecture and Civil Engineering","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Towards Passive Design Strategies for Improving Thermal Comfort Performance in a Naturally Ventilated Residence\",\"authors\":\"K. Rana\",\"doi\":\"10.5755/j01.sace.29.2.29256\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Passive design integrates a wide range of climate-based strategies to increase occupant thermal comfort and minimise the need for mechanical systems for heating and cooling. The aim of this study was to improve the thermal comfort performance in a naturally ventilated residence through the identification and evaluation of the best set of passive design strategies. A two-storey residence located in Washington, United States with a temperate climate was selected as the case study residence. A reference simulation model was developed by replicating only the orientation and massing of the case study residence, while certain assumptions were made for other building characteristics. Thermal comfort performance analysis was conducted in the DesignBuilder software. A set of design strategies were introduced as interventions followed by simulation runs to efficiently track progress. From the reference simulation model to the final intervention model, a 50% reduction in the annual discomfort hours was anticipated in the five selected zones of the residence. Following the integration of four major interventions, the target discomfort hours were met in three zones—library, bedroom 1 and bedroom 2, with 53.03%, 60.42% and 58.94% reduction in discomfort hours, respectively. The two remaining zones—living and lounge also had a notable improvement with a reduction of 43.93% and 45.99%, respectively. The successful design strategies included—incorporation of triple glazed, low-emissivity and argon filled openings with wooden frames; integration of overhangs in south-facing windows, minor reduction of openings in the east and west façade, and addition of blinds for window shading; and use of an energy code standard construction for the building components and further addition of insulation in the building envelope. The most effective intervention was the customisation of the window operation schedule based on seasonal air temperature differences to optimise natural ventilation. This study demonstrated that occupant thermal comfort can be significantly improved throughout the year with the appropriate use of passive heating and cooling strategies, thereby reducing energy consumption and the environmental impact of buildings.\",\"PeriodicalId\":36795,\"journal\":{\"name\":\"Journal of Sustainable Architecture and Civil Engineering\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Sustainable Architecture and Civil Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5755/j01.sace.29.2.29256\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Sustainable Architecture and Civil Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5755/j01.sace.29.2.29256","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 2

摘要

被动式设计集成了广泛的基于气候的策略,以增加居住者的热舒适性,并最大限度地减少对加热和冷却机械系统的需求。本研究的目的是通过识别和评估最佳被动式设计策略来改善自然通风住宅的热舒适性能。一个位于美国华盛顿的两层住宅,气候温和,被选为案例研究住宅。参考模拟模型只复制了案例研究住宅的朝向和体量,同时对其他建筑特征进行了一定的假设。在DesignBuilder软件中进行热舒适性能分析。引入了一组设计策略作为干预措施,然后进行了模拟运行,以有效地跟踪进度。从参考模拟模型到最终干预模型,预计在住宅的五个选定区域中,每年的不适时间将减少50%。综合4大干预措施后,图书馆、卧室1和卧室2 3个区域的不适时间达到目标,分别减少53.03%、60.42%和58.94%的不适时间。剩下的两个区域——起居室和休息室也有显著改善,分别减少了43.93%和45.99%。成功的设计策略包括结合三层玻璃,低辐射和充满氩气的木制框架开口;在朝南的窗户上集成悬挑,在东立面和西立面上略微减少开口,并增加百叶窗遮阳;在建筑构件中使用能源规范标准,并在建筑围护结构中进一步增加绝缘材料。最有效的干预措施是根据季节性空气温差定制窗户操作时间表,以优化自然通风。该研究表明,适当使用被动式采暖和制冷策略,可以显著提高居住者全年的热舒适性,从而减少能源消耗和建筑对环境的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Towards Passive Design Strategies for Improving Thermal Comfort Performance in a Naturally Ventilated Residence
Passive design integrates a wide range of climate-based strategies to increase occupant thermal comfort and minimise the need for mechanical systems for heating and cooling. The aim of this study was to improve the thermal comfort performance in a naturally ventilated residence through the identification and evaluation of the best set of passive design strategies. A two-storey residence located in Washington, United States with a temperate climate was selected as the case study residence. A reference simulation model was developed by replicating only the orientation and massing of the case study residence, while certain assumptions were made for other building characteristics. Thermal comfort performance analysis was conducted in the DesignBuilder software. A set of design strategies were introduced as interventions followed by simulation runs to efficiently track progress. From the reference simulation model to the final intervention model, a 50% reduction in the annual discomfort hours was anticipated in the five selected zones of the residence. Following the integration of four major interventions, the target discomfort hours were met in three zones—library, bedroom 1 and bedroom 2, with 53.03%, 60.42% and 58.94% reduction in discomfort hours, respectively. The two remaining zones—living and lounge also had a notable improvement with a reduction of 43.93% and 45.99%, respectively. The successful design strategies included—incorporation of triple glazed, low-emissivity and argon filled openings with wooden frames; integration of overhangs in south-facing windows, minor reduction of openings in the east and west façade, and addition of blinds for window shading; and use of an energy code standard construction for the building components and further addition of insulation in the building envelope. The most effective intervention was the customisation of the window operation schedule based on seasonal air temperature differences to optimise natural ventilation. This study demonstrated that occupant thermal comfort can be significantly improved throughout the year with the appropriate use of passive heating and cooling strategies, thereby reducing energy consumption and the environmental impact of buildings.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.20
自引率
0.00%
发文量
21
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信