{"title":"基于人工神经网络的混凝土抗压强度估计","authors":"Srdjan Kostic, D. Vasović","doi":"10.5937/GRMK1501003K","DOIUrl":null,"url":null,"abstract":"In present paper, concrete compressive strength is evaluated using back propagation feed-forward artificial neural network. Training of neural network is performed using Levenberg-Marquardt learning algorithm for four architectures of artificial neural networks, one, three, eight and twelve nodes in a hidden layer in order to avoid the occurrence of overfitting. Training, validation and testing of neural network is conducted for 75 concrete samples with distinct w/c ratio and amount of superplasticizer of melamine type. These specimens were exposed to different number of freeze/thaw cycles and their compressive strength was determined after 7, 20 and 32 days. The obtained results indicate that neural network with one hidden layer and twelve hidden nodes gives reasonable prediction accuracy in comparison to experimental results (R=0.965, MSE=0.005). These results of the performed analysis are further confirmed by calculating the standard statistical errors: the chosen architecture of neural network shows the smallest value of mean absolute percentage error (MAPE=, variance absolute relative error (VARE) and median absolute error (MEDAE), and the highest value of variance accounted for (VAF).","PeriodicalId":40707,"journal":{"name":"Gradevnski Materijiali I Konstrukcije-Building Materials and Structures","volume":"58 1","pages":"3-16"},"PeriodicalIF":0.5000,"publicationDate":"2015-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Estimation of concrete compressive strength using artificial neural network\",\"authors\":\"Srdjan Kostic, D. Vasović\",\"doi\":\"10.5937/GRMK1501003K\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In present paper, concrete compressive strength is evaluated using back propagation feed-forward artificial neural network. Training of neural network is performed using Levenberg-Marquardt learning algorithm for four architectures of artificial neural networks, one, three, eight and twelve nodes in a hidden layer in order to avoid the occurrence of overfitting. Training, validation and testing of neural network is conducted for 75 concrete samples with distinct w/c ratio and amount of superplasticizer of melamine type. These specimens were exposed to different number of freeze/thaw cycles and their compressive strength was determined after 7, 20 and 32 days. The obtained results indicate that neural network with one hidden layer and twelve hidden nodes gives reasonable prediction accuracy in comparison to experimental results (R=0.965, MSE=0.005). These results of the performed analysis are further confirmed by calculating the standard statistical errors: the chosen architecture of neural network shows the smallest value of mean absolute percentage error (MAPE=, variance absolute relative error (VARE) and median absolute error (MEDAE), and the highest value of variance accounted for (VAF).\",\"PeriodicalId\":40707,\"journal\":{\"name\":\"Gradevnski Materijiali I Konstrukcije-Building Materials and Structures\",\"volume\":\"58 1\",\"pages\":\"3-16\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2015-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Gradevnski Materijiali I Konstrukcije-Building Materials and Structures\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5937/GRMK1501003K\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Gradevnski Materijiali I Konstrukcije-Building Materials and Structures","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5937/GRMK1501003K","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
Estimation of concrete compressive strength using artificial neural network
In present paper, concrete compressive strength is evaluated using back propagation feed-forward artificial neural network. Training of neural network is performed using Levenberg-Marquardt learning algorithm for four architectures of artificial neural networks, one, three, eight and twelve nodes in a hidden layer in order to avoid the occurrence of overfitting. Training, validation and testing of neural network is conducted for 75 concrete samples with distinct w/c ratio and amount of superplasticizer of melamine type. These specimens were exposed to different number of freeze/thaw cycles and their compressive strength was determined after 7, 20 and 32 days. The obtained results indicate that neural network with one hidden layer and twelve hidden nodes gives reasonable prediction accuracy in comparison to experimental results (R=0.965, MSE=0.005). These results of the performed analysis are further confirmed by calculating the standard statistical errors: the chosen architecture of neural network shows the smallest value of mean absolute percentage error (MAPE=, variance absolute relative error (VARE) and median absolute error (MEDAE), and the highest value of variance accounted for (VAF).