$L^p(\mu)$ -空间上组合运算符之间的隔离 $(1\le p \le \infty)$

Pub Date : 2023-01-01 DOI:10.7153/oam-2023-17-13
Ashish Naudiyal, H. Chandra
{"title":"$L^p(\\mu)$ -空间上组合运算符之间的隔离 $(1\\le p \\le \\infty)$","authors":"Ashish Naudiyal, H. Chandra","doi":"10.7153/oam-2023-17-13","DOIUrl":null,"url":null,"abstract":". In this paper we show that each composition operator is isolated in comp ( L p ) ( 1 (cid:2) p (cid:2) ∞ ) under the norm topology. We also prove that while each composition operator is non-isolated in comp ( (cid:2) p ) ( 1 (cid:2) p < ∞ ) under the strong operator topology, every composition operator is isolated in comp ( L ∞ ) under the strong operator topology.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Isolation amongst composition operators on $L^p(\\\\mu)$-spaces $(1\\\\le p \\\\le \\\\infty)$\",\"authors\":\"Ashish Naudiyal, H. Chandra\",\"doi\":\"10.7153/oam-2023-17-13\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". In this paper we show that each composition operator is isolated in comp ( L p ) ( 1 (cid:2) p (cid:2) ∞ ) under the norm topology. We also prove that while each composition operator is non-isolated in comp ( (cid:2) p ) ( 1 (cid:2) p < ∞ ) under the strong operator topology, every composition operator is isolated in comp ( L ∞ ) under the strong operator topology.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.7153/oam-2023-17-13\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.7153/oam-2023-17-13","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

. 本文证明了在范数拓扑下,每个复合算子在comp (L p) (1 (cid:2) p (cid:2)∞)上是孤立的。我们还证明了在强算子拓扑下,每个复合算子在comp ((cid:2) p) (1 (cid:2) p <∞)上是不孤立的,而在强算子拓扑下,每个复合算子在comp (L∞)上是孤立的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Isolation amongst composition operators on $L^p(\mu)$-spaces $(1\le p \le \infty)$
. In this paper we show that each composition operator is isolated in comp ( L p ) ( 1 (cid:2) p (cid:2) ∞ ) under the norm topology. We also prove that while each composition operator is non-isolated in comp ( (cid:2) p ) ( 1 (cid:2) p < ∞ ) under the strong operator topology, every composition operator is isolated in comp ( L ∞ ) under the strong operator topology.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信