{"title":"$L^p(\\mu)$ -空间上组合运算符之间的隔离 $(1\\le p \\le \\infty)$","authors":"Ashish Naudiyal, H. Chandra","doi":"10.7153/oam-2023-17-13","DOIUrl":null,"url":null,"abstract":". In this paper we show that each composition operator is isolated in comp ( L p ) ( 1 (cid:2) p (cid:2) ∞ ) under the norm topology. We also prove that while each composition operator is non-isolated in comp ( (cid:2) p ) ( 1 (cid:2) p < ∞ ) under the strong operator topology, every composition operator is isolated in comp ( L ∞ ) under the strong operator topology.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Isolation amongst composition operators on $L^p(\\\\mu)$-spaces $(1\\\\le p \\\\le \\\\infty)$\",\"authors\":\"Ashish Naudiyal, H. Chandra\",\"doi\":\"10.7153/oam-2023-17-13\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". In this paper we show that each composition operator is isolated in comp ( L p ) ( 1 (cid:2) p (cid:2) ∞ ) under the norm topology. We also prove that while each composition operator is non-isolated in comp ( (cid:2) p ) ( 1 (cid:2) p < ∞ ) under the strong operator topology, every composition operator is isolated in comp ( L ∞ ) under the strong operator topology.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.7153/oam-2023-17-13\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.7153/oam-2023-17-13","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
. 本文证明了在范数拓扑下,每个复合算子在comp (L p) (1 (cid:2) p (cid:2)∞)上是孤立的。我们还证明了在强算子拓扑下,每个复合算子在comp ((cid:2) p) (1 (cid:2) p <∞)上是不孤立的,而在强算子拓扑下,每个复合算子在comp (L∞)上是孤立的。
Isolation amongst composition operators on $L^p(\mu)$-spaces $(1\le p \le \infty)$
. In this paper we show that each composition operator is isolated in comp ( L p ) ( 1 (cid:2) p (cid:2) ∞ ) under the norm topology. We also prove that while each composition operator is non-isolated in comp ( (cid:2) p ) ( 1 (cid:2) p < ∞ ) under the strong operator topology, every composition operator is isolated in comp ( L ∞ ) under the strong operator topology.