{"title":"完全分配交换子空间格代数上的乘性广义李n导","authors":"Fei Ma, Min Yin","doi":"10.7153/oam-2023-17-10","DOIUrl":null,"url":null,"abstract":". Let Alg L be a completely distributive commutative subspace lattice algebra and let δ : Alg L → Alg L be a nonlinear map. It is shown that δ is a multiplicative generalized Lie n -derivation on Alg L with an associated multiplicative generalized Lie n -derivation d if and only if δ ( A ) = ψ ( A )+ ξ ( A ) holds for every A ∈ Alg L , where ψ : Alg L → Alg L is an additive generalized derivation and ξ : Alg L → Z ( Alg L ) is a central-valued map vanishing on each ( n − 1 ) -th commutator p n ( A 1 , A 2 , ··· , A n ) .","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multiplicative generalized Lie n-derivations on completely distributive commutative subspace lattice algebras\",\"authors\":\"Fei Ma, Min Yin\",\"doi\":\"10.7153/oam-2023-17-10\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". Let Alg L be a completely distributive commutative subspace lattice algebra and let δ : Alg L → Alg L be a nonlinear map. It is shown that δ is a multiplicative generalized Lie n -derivation on Alg L with an associated multiplicative generalized Lie n -derivation d if and only if δ ( A ) = ψ ( A )+ ξ ( A ) holds for every A ∈ Alg L , where ψ : Alg L → Alg L is an additive generalized derivation and ξ : Alg L → Z ( Alg L ) is a central-valued map vanishing on each ( n − 1 ) -th commutator p n ( A 1 , A 2 , ··· , A n ) .\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.7153/oam-2023-17-10\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.7153/oam-2023-17-10","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
. Let Alg L be a completely distributive commutative subspace lattice algebra and let δ : Alg L → Alg L be a nonlinear map. It is shown that δ is a multiplicative generalized Lie n -derivation on Alg L with an associated multiplicative generalized Lie n -derivation d if and only if δ ( A ) = ψ ( A )+ ξ ( A ) holds for every A ∈ Alg L , where ψ : Alg L → Alg L is an additive generalized derivation and ξ : Alg L → Z ( Alg L ) is a central-valued map vanishing on each ( n − 1 ) -th commutator p n ( A 1 , A 2 , ··· , A n ) .