{"title":"关于奇异值的多数化的注意事项","authors":"Jianguo Zhao","doi":"10.7153/oam-2022-16-65","DOIUrl":null,"url":null,"abstract":". In this note, we mainly investigate the majorizations on the products and sums of matrices. Firstly, we present the following result: Let A i , B i and X i ∈ M n ( C ) ( i = 1 , 2 , ··· , m ) with X i ( i = 1 , 2 , ··· , m ) are invertible matrices, and let h be a nonnegative increasing continuous function on [ 0 , + ∞ ) with h ( 0 ) = 0. If f , g are nonnegative continuous functions on [ 0 , + ∞ ) with f ( t ) g ( t ) = t for t ∈ [ 0 , + ∞ ) , then","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Notes on majorizations for singular values\",\"authors\":\"Jianguo Zhao\",\"doi\":\"10.7153/oam-2022-16-65\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". In this note, we mainly investigate the majorizations on the products and sums of matrices. Firstly, we present the following result: Let A i , B i and X i ∈ M n ( C ) ( i = 1 , 2 , ··· , m ) with X i ( i = 1 , 2 , ··· , m ) are invertible matrices, and let h be a nonnegative increasing continuous function on [ 0 , + ∞ ) with h ( 0 ) = 0. If f , g are nonnegative continuous functions on [ 0 , + ∞ ) with f ( t ) g ( t ) = t for t ∈ [ 0 , + ∞ ) , then\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.7153/oam-2022-16-65\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.7153/oam-2022-16-65","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
. 在这篇笔记中,我们主要研究矩阵的乘积和的多数化。首先,我们给出了以下结果:设A i, B i, X i∈M n (C) (i = 1,2,···,M),其中X i (i = 1,2,···,M)是可逆矩阵,设h是一个在[0,+∞)上的非负递增连续函数,h(0) = 0。若f, g是[0,+∞)上的非负连续函数,且对于t∈[0,+∞),f (t) g (t) = t,则
. In this note, we mainly investigate the majorizations on the products and sums of matrices. Firstly, we present the following result: Let A i , B i and X i ∈ M n ( C ) ( i = 1 , 2 , ··· , m ) with X i ( i = 1 , 2 , ··· , m ) are invertible matrices, and let h be a nonnegative increasing continuous function on [ 0 , + ∞ ) with h ( 0 ) = 0. If f , g are nonnegative continuous functions on [ 0 , + ∞ ) with f ( t ) g ( t ) = t for t ∈ [ 0 , + ∞ ) , then