{"title":"Hopfians空间的刻画","authors":"H. Boua, A. Tajmouati","doi":"10.7153/oam-2023-17-02","DOIUrl":null,"url":null,"abstract":". A Banach space X is called Hop fi an, if any bounded linear operator surjective is bijective. The existence of the Banach Hop fi ans spaces in in fi nite dimension was established by Gowers and Maury in 1993. In this note we obtain some characterizations of Banach spaces Hop fi ans by properties of the algebra of bounded linear operators B ( X ) . Mathematics subject classi fi cation (2020): 47A10, 47A11.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Characterizations of Hopfians spaces\",\"authors\":\"H. Boua, A. Tajmouati\",\"doi\":\"10.7153/oam-2023-17-02\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". A Banach space X is called Hop fi an, if any bounded linear operator surjective is bijective. The existence of the Banach Hop fi ans spaces in in fi nite dimension was established by Gowers and Maury in 1993. In this note we obtain some characterizations of Banach spaces Hop fi ans by properties of the algebra of bounded linear operators B ( X ) . Mathematics subject classi fi cation (2020): 47A10, 47A11.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.7153/oam-2023-17-02\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.7153/oam-2023-17-02","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
. 如果任何有界线性算子满射是双射,则称巴拿赫空间X为Hop fi an。Banach Hop fi - ans空间的存在性是由Gowers和Maury在1993年建立的。本文利用有界线性算子B (X)的代数性质,得到了Banach空间Hop - fi的一些刻画。数学学科分类(2020):47A10、47A11。
. A Banach space X is called Hop fi an, if any bounded linear operator surjective is bijective. The existence of the Banach Hop fi ans spaces in in fi nite dimension was established by Gowers and Maury in 1993. In this note we obtain some characterizations of Banach spaces Hop fi ans by properties of the algebra of bounded linear operators B ( X ) . Mathematics subject classi fi cation (2020): 47A10, 47A11.