具有泊松跳变的随机年龄结构合作Lotka-Volterra系统的渐近稳定性

IF 1 4区 数学 Q2 MATHEMATICS
Mengqing Zhang, Jing Tian, Keyue Zou
{"title":"具有泊松跳变的随机年龄结构合作Lotka-Volterra系统的渐近稳定性","authors":"Mengqing Zhang, Jing Tian, Keyue Zou","doi":"10.58997/ejde.2023.02","DOIUrl":null,"url":null,"abstract":"In this article, we study a stochastic age-structured cooperative Lotka-Volterra system with Poisson jumps. Applying the M-matrix theory, we prove the existence and uniqueness of a global solution for the system. Then we use an optimized Euler-Maruyama numerical scheme to approximate the solution. We obtain second-moment boundedness and convergence rate of the numerical solutions. The numerical solutions illustrate the theoretical results.","PeriodicalId":49213,"journal":{"name":"Electronic Journal of Differential Equations","volume":"1 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Asymptotic stability of a stochastic age-structured cooperative Lotka-Volterra system with Poisson jumps\",\"authors\":\"Mengqing Zhang, Jing Tian, Keyue Zou\",\"doi\":\"10.58997/ejde.2023.02\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, we study a stochastic age-structured cooperative Lotka-Volterra system with Poisson jumps. Applying the M-matrix theory, we prove the existence and uniqueness of a global solution for the system. Then we use an optimized Euler-Maruyama numerical scheme to approximate the solution. We obtain second-moment boundedness and convergence rate of the numerical solutions. The numerical solutions illustrate the theoretical results.\",\"PeriodicalId\":49213,\"journal\":{\"name\":\"Electronic Journal of Differential Equations\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronic Journal of Differential Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.58997/ejde.2023.02\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.58997/ejde.2023.02","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了具有泊松跳变的随机年龄结构合作Lotka-Volterra系统。利用m矩阵理论,证明了该系统整体解的存在唯一性。然后用优化的Euler-Maruyama数值格式逼近解。得到了数值解的二阶矩有界性和收敛速率。数值解说明了理论结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Asymptotic stability of a stochastic age-structured cooperative Lotka-Volterra system with Poisson jumps
In this article, we study a stochastic age-structured cooperative Lotka-Volterra system with Poisson jumps. Applying the M-matrix theory, we prove the existence and uniqueness of a global solution for the system. Then we use an optimized Euler-Maruyama numerical scheme to approximate the solution. We obtain second-moment boundedness and convergence rate of the numerical solutions. The numerical solutions illustrate the theoretical results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Electronic Journal of Differential Equations
Electronic Journal of Differential Equations MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
1.50
自引率
14.30%
发文量
1
审稿时长
3 months
期刊介绍: All topics on differential equations and their applications (ODEs, PDEs, integral equations, delay equations, functional differential equations, etc.) will be considered for publication in Electronic Journal of Differential Equations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信