{"title":"具有泊松跳变的随机年龄结构合作Lotka-Volterra系统的渐近稳定性","authors":"Mengqing Zhang, Jing Tian, Keyue Zou","doi":"10.58997/ejde.2023.02","DOIUrl":null,"url":null,"abstract":"In this article, we study a stochastic age-structured cooperative Lotka-Volterra system with Poisson jumps. Applying the M-matrix theory, we prove the existence and uniqueness of a global solution for the system. Then we use an optimized Euler-Maruyama numerical scheme to approximate the solution. We obtain second-moment boundedness and convergence rate of the numerical solutions. The numerical solutions illustrate the theoretical results.","PeriodicalId":49213,"journal":{"name":"Electronic Journal of Differential Equations","volume":"1 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Asymptotic stability of a stochastic age-structured cooperative Lotka-Volterra system with Poisson jumps\",\"authors\":\"Mengqing Zhang, Jing Tian, Keyue Zou\",\"doi\":\"10.58997/ejde.2023.02\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, we study a stochastic age-structured cooperative Lotka-Volterra system with Poisson jumps. Applying the M-matrix theory, we prove the existence and uniqueness of a global solution for the system. Then we use an optimized Euler-Maruyama numerical scheme to approximate the solution. We obtain second-moment boundedness and convergence rate of the numerical solutions. The numerical solutions illustrate the theoretical results.\",\"PeriodicalId\":49213,\"journal\":{\"name\":\"Electronic Journal of Differential Equations\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronic Journal of Differential Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.58997/ejde.2023.02\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.58997/ejde.2023.02","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
Asymptotic stability of a stochastic age-structured cooperative Lotka-Volterra system with Poisson jumps
In this article, we study a stochastic age-structured cooperative Lotka-Volterra system with Poisson jumps. Applying the M-matrix theory, we prove the existence and uniqueness of a global solution for the system. Then we use an optimized Euler-Maruyama numerical scheme to approximate the solution. We obtain second-moment boundedness and convergence rate of the numerical solutions. The numerical solutions illustrate the theoretical results.
期刊介绍:
All topics on differential equations and their applications (ODEs, PDEs, integral equations, delay equations, functional differential equations, etc.) will be considered for publication in Electronic Journal of Differential Equations.