相互连接的热波方程的内部稳定

IF 0.8 4区 数学 Q2 MATHEMATICS
Xiulan Yu, Jun‐min Wang, Han-Wen Zhang
{"title":"相互连接的热波方程的内部稳定","authors":"Xiulan Yu, Jun‐min Wang, Han-Wen Zhang","doi":"10.58997/ejde.2023.03","DOIUrl":null,"url":null,"abstract":"This article concerns the internal stabilization problem of 1-D interconnected heat-wave equations, where information exchange and the two actuators occur at the adjacent side of the two equations. By designing an inverse back-stepping transformation, the original system is converted into a dissipative target system. Moreover, we investigate the eigenvalues distribution and the corresponding eigenfunctions of the closed-loop system by an asymptotic analysis method. This shows that the spectrum of the system can be divided into two families: one distributed along the a line parallel to the left side of the imaginary axis and symmetric to the real axis, and the other on the left half real axis. Then we work on the properties of the resolvent operator and we verify that the root subspace is complete. Finally, we prove that the closed-loop system is exponentially stable.","PeriodicalId":49213,"journal":{"name":"Electronic Journal of Differential Equations","volume":"1 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Internal stabilization of interconnected heat-wave equations\",\"authors\":\"Xiulan Yu, Jun‐min Wang, Han-Wen Zhang\",\"doi\":\"10.58997/ejde.2023.03\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article concerns the internal stabilization problem of 1-D interconnected heat-wave equations, where information exchange and the two actuators occur at the adjacent side of the two equations. By designing an inverse back-stepping transformation, the original system is converted into a dissipative target system. Moreover, we investigate the eigenvalues distribution and the corresponding eigenfunctions of the closed-loop system by an asymptotic analysis method. This shows that the spectrum of the system can be divided into two families: one distributed along the a line parallel to the left side of the imaginary axis and symmetric to the real axis, and the other on the left half real axis. Then we work on the properties of the resolvent operator and we verify that the root subspace is complete. Finally, we prove that the closed-loop system is exponentially stable.\",\"PeriodicalId\":49213,\"journal\":{\"name\":\"Electronic Journal of Differential Equations\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronic Journal of Differential Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.58997/ejde.2023.03\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.58997/ejde.2023.03","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文研究一维互连热浪方程的内稳定问题,其中信息交换和两个致动器发生在两个方程的相邻侧。通过设计逆步变换,将原系统转换为耗散目标系统。此外,利用渐近分析方法研究了闭环系统的特征值分布和相应的特征函数。这表明,系统的光谱可以分为两族:一族分布在与虚轴左侧平行并与实轴对称的直线上,另一族分布在左半实轴上。然后我们研究解析算子的性质,并验证根子空间是完备的。最后,我们证明了闭环系统是指数稳定的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Internal stabilization of interconnected heat-wave equations
This article concerns the internal stabilization problem of 1-D interconnected heat-wave equations, where information exchange and the two actuators occur at the adjacent side of the two equations. By designing an inverse back-stepping transformation, the original system is converted into a dissipative target system. Moreover, we investigate the eigenvalues distribution and the corresponding eigenfunctions of the closed-loop system by an asymptotic analysis method. This shows that the spectrum of the system can be divided into two families: one distributed along the a line parallel to the left side of the imaginary axis and symmetric to the real axis, and the other on the left half real axis. Then we work on the properties of the resolvent operator and we verify that the root subspace is complete. Finally, we prove that the closed-loop system is exponentially stable.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Electronic Journal of Differential Equations
Electronic Journal of Differential Equations MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
1.50
自引率
14.30%
发文量
1
审稿时长
3 months
期刊介绍: All topics on differential equations and their applications (ODEs, PDEs, integral equations, delay equations, functional differential equations, etc.) will be considered for publication in Electronic Journal of Differential Equations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信