微阵列斑点分割和基因表达分析的新方法

A. Hudaib, H. Fakhouri, Rawan Ghnemat
{"title":"微阵列斑点分割和基因表达分析的新方法","authors":"A. Hudaib, H. Fakhouri, Rawan Ghnemat","doi":"10.5897/SRE2015.6378","DOIUrl":null,"url":null,"abstract":"DNA microarray analysis is the main core in genome mapping. Each microarray image contains millions of information about genes. Microarray analysis is considered one of the most recent and important technologies in exploring the genome. One of the key steps in microarray analysis is to extract gene information from the gene spots, these information represent gene expression levels in the microarray. This paper proposes a new methodology to improve microarray spot analysis based on spot extracted segments. It concentrates on each spot segment area independently rather than analyzing all the spots area together of the microarray image. This paper provides a formal model to enhance the intensity values obtained from gene expression levels of the microarray at any intensity expressed level. It also this paper presents the adaptive threshold techniques to be used for microarray segmentation. The experimental results show that the mean of the gene expression intensity value was 87.77. \n \n   \n \n Key words: Microarray images, microarray analysis, image segmentation, gridding, microarray addressing, spot localization, spot extraction.","PeriodicalId":21603,"journal":{"name":"Scientific Research and Essays","volume":"11 1","pages":"126-134"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.5897/SRE2015.6378","citationCount":"2","resultStr":"{\"title\":\"New methodology for microarray spot segmentation and gene expression analysis\",\"authors\":\"A. Hudaib, H. Fakhouri, Rawan Ghnemat\",\"doi\":\"10.5897/SRE2015.6378\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"DNA microarray analysis is the main core in genome mapping. Each microarray image contains millions of information about genes. Microarray analysis is considered one of the most recent and important technologies in exploring the genome. One of the key steps in microarray analysis is to extract gene information from the gene spots, these information represent gene expression levels in the microarray. This paper proposes a new methodology to improve microarray spot analysis based on spot extracted segments. It concentrates on each spot segment area independently rather than analyzing all the spots area together of the microarray image. This paper provides a formal model to enhance the intensity values obtained from gene expression levels of the microarray at any intensity expressed level. It also this paper presents the adaptive threshold techniques to be used for microarray segmentation. The experimental results show that the mean of the gene expression intensity value was 87.77. \\n \\n   \\n \\n Key words: Microarray images, microarray analysis, image segmentation, gridding, microarray addressing, spot localization, spot extraction.\",\"PeriodicalId\":21603,\"journal\":{\"name\":\"Scientific Research and Essays\",\"volume\":\"11 1\",\"pages\":\"126-134\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.5897/SRE2015.6378\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientific Research and Essays\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5897/SRE2015.6378\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Research and Essays","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5897/SRE2015.6378","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

DNA微阵列分析是基因组定位的核心。每个微阵列图像包含数以百万计的基因信息。微阵列分析被认为是研究基因组最新和最重要的技术之一。从基因斑点中提取基因信息是芯片分析的关键步骤之一,这些信息代表了基因在芯片中的表达水平。本文提出了一种基于斑点提取片段改进芯片斑点分析的新方法。它不是对微阵列图像的所有斑点区域进行综合分析,而是对每个斑点区域进行独立的分析。本文提供了一个形式模型来增强从基因表达水平得到的强度值在任何强度表达水平的微阵列。本文还介绍了用于微阵列分割的自适应阈值技术。实验结果表明,基因表达强度值的平均值为87.77。关键词:微阵列图像,微阵列分析,图像分割,网格划分,微阵列寻址,斑点定位,斑点提取。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
New methodology for microarray spot segmentation and gene expression analysis
DNA microarray analysis is the main core in genome mapping. Each microarray image contains millions of information about genes. Microarray analysis is considered one of the most recent and important technologies in exploring the genome. One of the key steps in microarray analysis is to extract gene information from the gene spots, these information represent gene expression levels in the microarray. This paper proposes a new methodology to improve microarray spot analysis based on spot extracted segments. It concentrates on each spot segment area independently rather than analyzing all the spots area together of the microarray image. This paper provides a formal model to enhance the intensity values obtained from gene expression levels of the microarray at any intensity expressed level. It also this paper presents the adaptive threshold techniques to be used for microarray segmentation. The experimental results show that the mean of the gene expression intensity value was 87.77.   Key words: Microarray images, microarray analysis, image segmentation, gridding, microarray addressing, spot localization, spot extraction.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Scientific Research and Essays
Scientific Research and Essays 综合性期刊-综合性期刊
自引率
0.00%
发文量
6
审稿时长
3.3 months
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信