{"title":"带Lipschitz符号的多线性极大算子的换易子的正则性","authors":"Ting Chen, Feng Liu","doi":"10.7153/mia-2022-25-08","DOIUrl":null,"url":null,"abstract":". We study the regularity properties for commutators of multilinear fractional maximal operators. More precisely, let m (cid:2) 1, 0 (cid:3) α < mn and (cid:2) b = ( b 1 ,..., b m ) with each b i belonging to the Lipschitz space Lip ( R ) , we denote by [ (cid:2) b , M α ] (resp., M α ,(cid:2) b ) the commutator of the multilinear fractional maximal operator M α with (cid:2) b (resp., the multilinear fractional maximal commutators). When α = 0, we denote [ (cid:2) b , M α ] = [ (cid:2) b , M ] and M α ,(cid:2) b = M (cid:2) b . We show that for 0 < s < 1, 1 < p 1 ,..., p m , p , q < ∞ , 1 / p = 1 / p 1 + ··· + 1 / p m , both [ (cid:2) b , M ] and M (cid:2) b are bounded and continuous from W s , p 1 ( R n ) ×···× W s , p m ( R n ) to W s , p ( R n ) , from F p 1 , q s ( R n ) × ···× F p m , q s ( R n ) to F p , q s ( R n ) and from B p 1 , q s ( R n ) ×···× B p m , q s ( R n ) to B p , q s ( R n ) . It was also shown that for 0 (cid:3) α < mn , 1 < p 1 ,..., p m , q < ∞ and 1 / q = 1 / p 1 + ··· + 1 / p m − α / n , both [ (cid:2) b , M ] and M (cid:2) b are W 1 , p 1 ( R n ) ×···× W 1 , p m ( R n ) to W 1 , q ( R n ) .","PeriodicalId":49868,"journal":{"name":"Mathematical Inequalities & Applications","volume":"1 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Regularity of commutators of multilinear maximal operators with Lipschitz symbols\",\"authors\":\"Ting Chen, Feng Liu\",\"doi\":\"10.7153/mia-2022-25-08\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". We study the regularity properties for commutators of multilinear fractional maximal operators. More precisely, let m (cid:2) 1, 0 (cid:3) α < mn and (cid:2) b = ( b 1 ,..., b m ) with each b i belonging to the Lipschitz space Lip ( R ) , we denote by [ (cid:2) b , M α ] (resp., M α ,(cid:2) b ) the commutator of the multilinear fractional maximal operator M α with (cid:2) b (resp., the multilinear fractional maximal commutators). When α = 0, we denote [ (cid:2) b , M α ] = [ (cid:2) b , M ] and M α ,(cid:2) b = M (cid:2) b . We show that for 0 < s < 1, 1 < p 1 ,..., p m , p , q < ∞ , 1 / p = 1 / p 1 + ··· + 1 / p m , both [ (cid:2) b , M ] and M (cid:2) b are bounded and continuous from W s , p 1 ( R n ) ×···× W s , p m ( R n ) to W s , p ( R n ) , from F p 1 , q s ( R n ) × ···× F p m , q s ( R n ) to F p , q s ( R n ) and from B p 1 , q s ( R n ) ×···× B p m , q s ( R n ) to B p , q s ( R n ) . It was also shown that for 0 (cid:3) α < mn , 1 < p 1 ,..., p m , q < ∞ and 1 / q = 1 / p 1 + ··· + 1 / p m − α / n , both [ (cid:2) b , M ] and M (cid:2) b are W 1 , p 1 ( R n ) ×···× W 1 , p m ( R n ) to W 1 , q ( R n ) .\",\"PeriodicalId\":49868,\"journal\":{\"name\":\"Mathematical Inequalities & Applications\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Inequalities & Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.7153/mia-2022-25-08\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Inequalities & Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.7153/mia-2022-25-08","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
. 我们研究了最大多线型框架联合人员的监管属性。更多precisely,让m (cid 3: 2) 1、0 (cid)α< mn和(cid): 2) b = (b 1, ...b, m)和每b i ' belonging to Lipschitz太空嘴唇杂志》(R),我们denote由(cid:(2) b, mα](代表。, Mα(cid commutator》:2)b) multilinear最大限度fractional Mα与操作员(cid: 2) b(代表)。最大限度,《multilinear fractional commutators)。当α= 0,则我们denote (cid:(2) b, Mα]= [(cid: 2) b、M)和α(cid: 2) b = M (cid: 2) b。我们展示给0 < s < 1, 1 < p 1, ...p m, p, q <∞,1 / p = 1 / p p +···+ 1 / m,两者(cid:(2) b, m和m (cid): 2) b是bounded挑战从W s,睡意朦胧,p (n)×R···1×W s, R p m (n)到R W s, p (n),从F p 1, q R s (n ) × ···× F p m, p q R s (n)到F,从B p q R s (n)和1,q s (n)×R···×B p m, p q R s (n) to B, q R s (n)。那是还展示为0 (cid: 3)α< p < 1, ...哪里m, p, q <∞和p - q = 1 / 1 +···+ 1 / p m−α/ n, [(cid): 2) b, m和m (cid): 2) b是1,p (n)×R W·R·m·W×1,p (n)到R W 1, q (n)。
Regularity of commutators of multilinear maximal operators with Lipschitz symbols
. We study the regularity properties for commutators of multilinear fractional maximal operators. More precisely, let m (cid:2) 1, 0 (cid:3) α < mn and (cid:2) b = ( b 1 ,..., b m ) with each b i belonging to the Lipschitz space Lip ( R ) , we denote by [ (cid:2) b , M α ] (resp., M α ,(cid:2) b ) the commutator of the multilinear fractional maximal operator M α with (cid:2) b (resp., the multilinear fractional maximal commutators). When α = 0, we denote [ (cid:2) b , M α ] = [ (cid:2) b , M ] and M α ,(cid:2) b = M (cid:2) b . We show that for 0 < s < 1, 1 < p 1 ,..., p m , p , q < ∞ , 1 / p = 1 / p 1 + ··· + 1 / p m , both [ (cid:2) b , M ] and M (cid:2) b are bounded and continuous from W s , p 1 ( R n ) ×···× W s , p m ( R n ) to W s , p ( R n ) , from F p 1 , q s ( R n ) × ···× F p m , q s ( R n ) to F p , q s ( R n ) and from B p 1 , q s ( R n ) ×···× B p m , q s ( R n ) to B p , q s ( R n ) . It was also shown that for 0 (cid:3) α < mn , 1 < p 1 ,..., p m , q < ∞ and 1 / q = 1 / p 1 + ··· + 1 / p m − α / n , both [ (cid:2) b , M ] and M (cid:2) b are W 1 , p 1 ( R n ) ×···× W 1 , p m ( R n ) to W 1 , q ( R n ) .
期刊介绍:
''Mathematical Inequalities & Applications'' (''MIA'') brings together original research papers in all areas of mathematics, provided they are concerned with inequalities or their role. From time to time ''MIA'' will publish invited survey articles. Short notes with interesting results or open problems will also be accepted. ''MIA'' is published quarterly, in January, April, July, and October.