离散Hardy型不等式和离散权重类的结构满足逆Hölder不等式

IF 0.9 4区 数学 Q2 MATHEMATICS
S. Saker, Jifeng Chu
{"title":"离散Hardy型不等式和离散权重类的结构满足逆Hölder不等式","authors":"S. Saker, Jifeng Chu","doi":"10.7153/MIA-2021-24-36","DOIUrl":null,"url":null,"abstract":"In this paper, we will prove a new discrete weighted Hardy’s type inequality with different powers. Next, we will apply this inequality to prove that the forward and backward propagation properties (self-improving properties) for the general discrete class Bp,q of weights that satisfy the reverse Hölder inequality hold. As special cases, we will deduce the self-improving properties of discrete Gehring and Muckenhoupt weights. An example is considered for illustrations. Mathematics subject classification (2010): 26D07, 40D25, 42C10 43A55,46A35, 46B15.","PeriodicalId":49868,"journal":{"name":"Mathematical Inequalities & Applications","volume":"1 1","pages":"521-541"},"PeriodicalIF":0.9000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Discrete Hardy's type inequalities and structure of discrete class of weights satisfy reverse Hölder's inequality\",\"authors\":\"S. Saker, Jifeng Chu\",\"doi\":\"10.7153/MIA-2021-24-36\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we will prove a new discrete weighted Hardy’s type inequality with different powers. Next, we will apply this inequality to prove that the forward and backward propagation properties (self-improving properties) for the general discrete class Bp,q of weights that satisfy the reverse Hölder inequality hold. As special cases, we will deduce the self-improving properties of discrete Gehring and Muckenhoupt weights. An example is considered for illustrations. Mathematics subject classification (2010): 26D07, 40D25, 42C10 43A55,46A35, 46B15.\",\"PeriodicalId\":49868,\"journal\":{\"name\":\"Mathematical Inequalities & Applications\",\"volume\":\"1 1\",\"pages\":\"521-541\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Inequalities & Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.7153/MIA-2021-24-36\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Inequalities & Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.7153/MIA-2021-24-36","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文将证明一个新的不同幂次的离散加权Hardy型不等式。接下来,我们将应用这个不等式来证明一般离散类Bp,q的权重满足反向Hölder不等式的正向和反向传播性质(自改进性质)成立。作为特殊情况,我们将推导离散Gehring权值和Muckenhoupt权值的自改进性质。考虑一个例子来说明。数学学科分类(2010):26D07、40D25、42C10、43A55、46A35、46B15。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Discrete Hardy's type inequalities and structure of discrete class of weights satisfy reverse Hölder's inequality
In this paper, we will prove a new discrete weighted Hardy’s type inequality with different powers. Next, we will apply this inequality to prove that the forward and backward propagation properties (self-improving properties) for the general discrete class Bp,q of weights that satisfy the reverse Hölder inequality hold. As special cases, we will deduce the self-improving properties of discrete Gehring and Muckenhoupt weights. An example is considered for illustrations. Mathematics subject classification (2010): 26D07, 40D25, 42C10 43A55,46A35, 46B15.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.30
自引率
10.00%
发文量
59
审稿时长
6-12 weeks
期刊介绍: ''Mathematical Inequalities & Applications'' (''MIA'') brings together original research papers in all areas of mathematics, provided they are concerned with inequalities or their role. From time to time ''MIA'' will publish invited survey articles. Short notes with interesting results or open problems will also be accepted. ''MIA'' is published quarterly, in January, April, July, and October.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信