二维矩形算子的加权Hardy不等式——E. Sawyer定理的推广

IF 0.9 4区 数学 Q2 MATHEMATICS
V. Stepanov, E. Ushakova
{"title":"二维矩形算子的加权Hardy不等式——E. Sawyer定理的推广","authors":"V. Stepanov, E. Ushakova","doi":"10.7153/mia-2021-24-43","DOIUrl":null,"url":null,"abstract":"A characterization is obtained for those pairs of weights $v$ and $w$ on $\\mathbb{R}^2_+$, for which the two--dimensional rectangular integration operator is bounded from a weighted Lebesgue space $L^p_v(\\mathbb{R}^2_+)$ to $L^q_w(\\mathbb{R}^2_+)$ for $1<p\\not= q<\\infty$, which is an essential complement to E. Sawyer's result \\cite{Saw1} given for $1<p\\leq q<\\infty$. Besides, we declare that the E. Sawyer theorem is actual if $p=q$ only, for $p<q$ the criterion is less complicated. The case $q<p$ is new.","PeriodicalId":49868,"journal":{"name":"Mathematical Inequalities & Applications","volume":"1 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"On weighted Hardy inequality with two-dimensional rectangular operator - extension of the E. Sawyer theorem\",\"authors\":\"V. Stepanov, E. Ushakova\",\"doi\":\"10.7153/mia-2021-24-43\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A characterization is obtained for those pairs of weights $v$ and $w$ on $\\\\mathbb{R}^2_+$, for which the two--dimensional rectangular integration operator is bounded from a weighted Lebesgue space $L^p_v(\\\\mathbb{R}^2_+)$ to $L^q_w(\\\\mathbb{R}^2_+)$ for $1<p\\\\not= q<\\\\infty$, which is an essential complement to E. Sawyer's result \\\\cite{Saw1} given for $1<p\\\\leq q<\\\\infty$. Besides, we declare that the E. Sawyer theorem is actual if $p=q$ only, for $p<q$ the criterion is less complicated. The case $q<p$ is new.\",\"PeriodicalId\":49868,\"journal\":{\"name\":\"Mathematical Inequalities & Applications\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Inequalities & Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.7153/mia-2021-24-43\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Inequalities & Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.7153/mia-2021-24-43","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

摘要

得到了$\mathbb{R}^2_+$上权重对$v$和$w$的一个刻画,对于$1本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文 本刊更多论文
On weighted Hardy inequality with two-dimensional rectangular operator - extension of the E. Sawyer theorem
A characterization is obtained for those pairs of weights $v$ and $w$ on $\mathbb{R}^2_+$, for which the two--dimensional rectangular integration operator is bounded from a weighted Lebesgue space $L^p_v(\mathbb{R}^2_+)$ to $L^q_w(\mathbb{R}^2_+)$ for $1
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.30
自引率
10.00%
发文量
59
审稿时长
6-12 weeks
期刊介绍: ''Mathematical Inequalities & Applications'' (''MIA'') brings together original research papers in all areas of mathematics, provided they are concerned with inequalities or their role. From time to time ''MIA'' will publish invited survey articles. Short notes with interesting results or open problems will also be accepted. ''MIA'' is published quarterly, in January, April, July, and October.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信