混合范数空间到zygmund型空间的Stević-Sharma算子

IF 0.9 4区 数学 Q2 MATHEMATICS
Zhitao Guo, Lingjun Liu, Yonglu Shu
{"title":"混合范数空间到zygmund型空间的Stević-Sharma算子","authors":"Zhitao Guo, Lingjun Liu, Yonglu Shu","doi":"10.7153/MIA-2021-24-31","DOIUrl":null,"url":null,"abstract":". Let ϕ be an analytic self-map of the unit disk D , H ( D ) the space of all analytic functions on D , and ψ 1 , ψ 2 ∈ H ( D ) . The boundedness and compactness of Stevi´c-Sharma operator T ψ 1 , ψ 2 , ϕ f = ψ 1 · f ◦ ϕ + ψ 2 · f (cid:5) ◦ ϕ from the mixed-norm space H ( p , q , φ ) to Zyg-mund-type space Z μ and little Zygmund-type space Z μ 0 are investigated in this paper.","PeriodicalId":49868,"journal":{"name":"Mathematical Inequalities & Applications","volume":"43 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"On Stević-Sharma operator from the mixed-norm spaces to Zygmund-type spaces\",\"authors\":\"Zhitao Guo, Lingjun Liu, Yonglu Shu\",\"doi\":\"10.7153/MIA-2021-24-31\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". Let ϕ be an analytic self-map of the unit disk D , H ( D ) the space of all analytic functions on D , and ψ 1 , ψ 2 ∈ H ( D ) . The boundedness and compactness of Stevi´c-Sharma operator T ψ 1 , ψ 2 , ϕ f = ψ 1 · f ◦ ϕ + ψ 2 · f (cid:5) ◦ ϕ from the mixed-norm space H ( p , q , φ ) to Zyg-mund-type space Z μ and little Zygmund-type space Z μ 0 are investigated in this paper.\",\"PeriodicalId\":49868,\"journal\":{\"name\":\"Mathematical Inequalities & Applications\",\"volume\":\"43 1\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Inequalities & Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.7153/MIA-2021-24-31\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Inequalities & Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.7153/MIA-2021-24-31","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 16

摘要

。设φ是单位圆盘D的解析自映射,H (D)是D上所有解析函数的空间,ψ 1, ψ 2∈H (D)。本文研究了从混合范数空间H (p, q, φ)到zyg - mond型空间Z μ和小zyg - mond型空间Z μ 0的Stevi´c-Sharma算子T ψ 1, ψ 2, φ = ψ 1·f◦φ + ψ 2·f (cid:5)◦φ的有界性和紧性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On Stević-Sharma operator from the mixed-norm spaces to Zygmund-type spaces
. Let ϕ be an analytic self-map of the unit disk D , H ( D ) the space of all analytic functions on D , and ψ 1 , ψ 2 ∈ H ( D ) . The boundedness and compactness of Stevi´c-Sharma operator T ψ 1 , ψ 2 , ϕ f = ψ 1 · f ◦ ϕ + ψ 2 · f (cid:5) ◦ ϕ from the mixed-norm space H ( p , q , φ ) to Zyg-mund-type space Z μ and little Zygmund-type space Z μ 0 are investigated in this paper.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.30
自引率
10.00%
发文量
59
审稿时长
6-12 weeks
期刊介绍: ''Mathematical Inequalities & Applications'' (''MIA'') brings together original research papers in all areas of mathematics, provided they are concerned with inequalities or their role. From time to time ''MIA'' will publish invited survey articles. Short notes with interesting results or open problems will also be accepted. ''MIA'' is published quarterly, in January, April, July, and October.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信