周期函数共凸逼近中的常数

IF 0.9 4区 数学 Q2 MATHEMATICS
G. Dzyubenko
{"title":"周期函数共凸逼近中的常数","authors":"G. Dzyubenko","doi":"10.7153/MIA-2021-24-14","DOIUrl":null,"url":null,"abstract":". Let 2 π -periodic function f ∈ C change its convexity fi nitely even many times, in the period. We are interested in estimating the degree of approximation of f by trigonometric polynomials which are coconvex with it, namely, polynomials that change their convexity exactly at the points where f does. We list established Jackson-type estimates of such approximation where the constants involved depend on the location of the points of change of convexity and show that this dependence is essential by constructing a counterexample.","PeriodicalId":49868,"journal":{"name":"Mathematical Inequalities & Applications","volume":"97 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On constants in coconvex approximation of periodic functions\",\"authors\":\"G. Dzyubenko\",\"doi\":\"10.7153/MIA-2021-24-14\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". Let 2 π -periodic function f ∈ C change its convexity fi nitely even many times, in the period. We are interested in estimating the degree of approximation of f by trigonometric polynomials which are coconvex with it, namely, polynomials that change their convexity exactly at the points where f does. We list established Jackson-type estimates of such approximation where the constants involved depend on the location of the points of change of convexity and show that this dependence is essential by constructing a counterexample.\",\"PeriodicalId\":49868,\"journal\":{\"name\":\"Mathematical Inequalities & Applications\",\"volume\":\"97 1\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Inequalities & Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.7153/MIA-2021-24-14\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Inequalities & Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.7153/MIA-2021-24-14","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

。设2 π周期函数f∈C,在一个周期内,将其凸性改变有限次,甚至多次。我们感兴趣的是通过与f共凸的三角多项式来估计f的近似程度,也就是说,多项式的凸度正好在f的点处改变。我们列出了这种近似的已建立的jackson型估计,其中所涉及的常数依赖于凸变点的位置,并通过构造一个反例表明这种依赖是必不可少的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On constants in coconvex approximation of periodic functions
. Let 2 π -periodic function f ∈ C change its convexity fi nitely even many times, in the period. We are interested in estimating the degree of approximation of f by trigonometric polynomials which are coconvex with it, namely, polynomials that change their convexity exactly at the points where f does. We list established Jackson-type estimates of such approximation where the constants involved depend on the location of the points of change of convexity and show that this dependence is essential by constructing a counterexample.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.30
自引率
10.00%
发文量
59
审稿时长
6-12 weeks
期刊介绍: ''Mathematical Inequalities & Applications'' (''MIA'') brings together original research papers in all areas of mathematics, provided they are concerned with inequalities or their role. From time to time ''MIA'' will publish invited survey articles. Short notes with interesting results or open problems will also be accepted. ''MIA'' is published quarterly, in January, April, July, and October.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信