{"title":"一个多线性Rellich不等式","authors":"D. Edmunds, A. Meskhi","doi":"10.7153/MIA-2021-24-19","DOIUrl":null,"url":null,"abstract":". We prove a multilinear variant of the Rellich inequality on the real line. In particular, we establish the weighted inequality with a positive function w on ( 0 , b − a )) , where − ∞ (cid:2) a < b (cid:2) + ∞ , m is a positive integer, δ ( x ) = min { x − a , b − x } is the distance function on ( a , b ) , and 1 / p = ∑ mj = 1 1 / p j , p j > 1, j = 1 ,..., m . As a corollary we derive the following estimate b Mathematics subject classi fi cation (2010): 26A42, 35A22, 35A23.","PeriodicalId":49868,"journal":{"name":"Mathematical Inequalities & Applications","volume":"1 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A multilinear Rellich inequality\",\"authors\":\"D. Edmunds, A. Meskhi\",\"doi\":\"10.7153/MIA-2021-24-19\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". We prove a multilinear variant of the Rellich inequality on the real line. In particular, we establish the weighted inequality with a positive function w on ( 0 , b − a )) , where − ∞ (cid:2) a < b (cid:2) + ∞ , m is a positive integer, δ ( x ) = min { x − a , b − x } is the distance function on ( a , b ) , and 1 / p = ∑ mj = 1 1 / p j , p j > 1, j = 1 ,..., m . As a corollary we derive the following estimate b Mathematics subject classi fi cation (2010): 26A42, 35A22, 35A23.\",\"PeriodicalId\":49868,\"journal\":{\"name\":\"Mathematical Inequalities & Applications\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Inequalities & Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.7153/MIA-2021-24-19\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Inequalities & Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.7153/MIA-2021-24-19","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
。在实线上证明了Rellich不等式的一个多线性变型。特别是,我们与积极建立加权不等式函数w (0, b−)),在−∞(cid: 2) < b (cid: 2) +∞,m是一个正整数,δ(x) =分钟{x−a, b−x}是距离函数(a、b),和1 / p =∑mj = 1 1 / p j, p j > 1, j = 1,……, m。根据数学学科分类(2010),我们得出如下估计:26A42, 35A22, 35A23。
. We prove a multilinear variant of the Rellich inequality on the real line. In particular, we establish the weighted inequality with a positive function w on ( 0 , b − a )) , where − ∞ (cid:2) a < b (cid:2) + ∞ , m is a positive integer, δ ( x ) = min { x − a , b − x } is the distance function on ( a , b ) , and 1 / p = ∑ mj = 1 1 / p j , p j > 1, j = 1 ,..., m . As a corollary we derive the following estimate b Mathematics subject classi fi cation (2010): 26A42, 35A22, 35A23.
期刊介绍:
''Mathematical Inequalities & Applications'' (''MIA'') brings together original research papers in all areas of mathematics, provided they are concerned with inequalities or their role. From time to time ''MIA'' will publish invited survey articles. Short notes with interesting results or open problems will also be accepted. ''MIA'' is published quarterly, in January, April, July, and October.