关于Stević-Sharma从加权Bergman空间到加权型空间的算子

IF 0.9 4区 数学 Q2 MATHEMATICS
M. Ghafri, J. Manhas
{"title":"关于Stević-Sharma从加权Bergman空间到加权型空间的算子","authors":"M. Ghafri, J. Manhas","doi":"10.7153/mia-2020-23-81","DOIUrl":null,"url":null,"abstract":"Let H (D) be the space of analytic functions on the unit disc D . Let φ be an analytic self-map of D and ψ1,ψ2 ∈H (D) . Let Cφ , Mψ and D denote the composition, multiplication and differentiation operators, respectively. In order to treat the products of these operators in a unified manner, Stević et al. introduced the following operator Tψ1 ,ψ2 ,φ f = ψ1 · f ◦φ +ψ2 · f ′ ◦φ , f ∈ H (D). We characterize the boundedness and compactness of the operators Tψ1 ,ψ2 ,φ from weighted Bergman spaces to weighted-type and little weighted-type spaces of analytic functions. Also, we give examples of bounded, unbounded, compact and non compact operators Tψ1 ,ψ2 ,φ . Mathematics subject classification (2010): 47B33, 47B38.","PeriodicalId":49868,"journal":{"name":"Mathematical Inequalities & Applications","volume":"1 1","pages":"1051-1077"},"PeriodicalIF":0.9000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"On Stević-Sharma operators from weighted Bergman spaces to weighted-type spaces\",\"authors\":\"M. Ghafri, J. Manhas\",\"doi\":\"10.7153/mia-2020-23-81\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let H (D) be the space of analytic functions on the unit disc D . Let φ be an analytic self-map of D and ψ1,ψ2 ∈H (D) . Let Cφ , Mψ and D denote the composition, multiplication and differentiation operators, respectively. In order to treat the products of these operators in a unified manner, Stević et al. introduced the following operator Tψ1 ,ψ2 ,φ f = ψ1 · f ◦φ +ψ2 · f ′ ◦φ , f ∈ H (D). We characterize the boundedness and compactness of the operators Tψ1 ,ψ2 ,φ from weighted Bergman spaces to weighted-type and little weighted-type spaces of analytic functions. Also, we give examples of bounded, unbounded, compact and non compact operators Tψ1 ,ψ2 ,φ . Mathematics subject classification (2010): 47B33, 47B38.\",\"PeriodicalId\":49868,\"journal\":{\"name\":\"Mathematical Inequalities & Applications\",\"volume\":\"1 1\",\"pages\":\"1051-1077\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Inequalities & Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.7153/mia-2020-23-81\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Inequalities & Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.7153/mia-2020-23-81","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 10

摘要

设H (D)为单位圆盘D上解析函数的空间。设φ是D和ψ1,ψ2∈H (D)的解析自映射。设Cφ, Mψ和D分别表示复合,乘法和微分算子。为了统一地处理这些算子的乘积,steviki等人引入了以下算子Tψ1,ψ2,φ f = ψ1·f◦φ +ψ2·f’◦φ, f∈H (D)。我们刻画了算子Tψ1,ψ2,φ从加权Bergman空间到解析函数的加权型和小加权型空间的有界性和紧性。同时,我们也给出了有界、无界、紧和非紧算子ψ1,ψ2,φ的例子。数学学科分类(2010):47B33, 47B38。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On Stević-Sharma operators from weighted Bergman spaces to weighted-type spaces
Let H (D) be the space of analytic functions on the unit disc D . Let φ be an analytic self-map of D and ψ1,ψ2 ∈H (D) . Let Cφ , Mψ and D denote the composition, multiplication and differentiation operators, respectively. In order to treat the products of these operators in a unified manner, Stević et al. introduced the following operator Tψ1 ,ψ2 ,φ f = ψ1 · f ◦φ +ψ2 · f ′ ◦φ , f ∈ H (D). We characterize the boundedness and compactness of the operators Tψ1 ,ψ2 ,φ from weighted Bergman spaces to weighted-type and little weighted-type spaces of analytic functions. Also, we give examples of bounded, unbounded, compact and non compact operators Tψ1 ,ψ2 ,φ . Mathematics subject classification (2010): 47B33, 47B38.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.30
自引率
10.00%
发文量
59
审稿时长
6-12 weeks
期刊介绍: ''Mathematical Inequalities & Applications'' (''MIA'') brings together original research papers in all areas of mathematics, provided they are concerned with inequalities or their role. From time to time ''MIA'' will publish invited survey articles. Short notes with interesting results or open problems will also be accepted. ''MIA'' is published quarterly, in January, April, July, and October.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信