径向函数的多线性分数阶积分算子的加权估计

IF 0.9 4区 数学 Q2 MATHEMATICS
Y. Komori‐Furuya, Enji Sato
{"title":"径向函数的多线性分数阶积分算子的加权估计","authors":"Y. Komori‐Furuya, Enji Sato","doi":"10.7153/mia-2020-23-19","DOIUrl":null,"url":null,"abstract":"Moen (2009) proved weighted estimates for multilinear fractional integral operators. We consider weighted estimates of these operators for radial functions and power weights and obtain a better result. Our result is a multilinear variant of the one by De Napoli, Drelichman and Durán (2011). As applications, we get improvements of the bilinear Caffarelli-Kohn-Nirenberg’s inequality. Mathematics subject classification (2010): 42B20.","PeriodicalId":49868,"journal":{"name":"Mathematical Inequalities & Applications","volume":"1 1","pages":"245-256"},"PeriodicalIF":0.9000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Weighted estimates of multilinear fractional integral operators for radial functions\",\"authors\":\"Y. Komori‐Furuya, Enji Sato\",\"doi\":\"10.7153/mia-2020-23-19\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Moen (2009) proved weighted estimates for multilinear fractional integral operators. We consider weighted estimates of these operators for radial functions and power weights and obtain a better result. Our result is a multilinear variant of the one by De Napoli, Drelichman and Durán (2011). As applications, we get improvements of the bilinear Caffarelli-Kohn-Nirenberg’s inequality. Mathematics subject classification (2010): 42B20.\",\"PeriodicalId\":49868,\"journal\":{\"name\":\"Mathematical Inequalities & Applications\",\"volume\":\"1 1\",\"pages\":\"245-256\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Inequalities & Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.7153/mia-2020-23-19\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Inequalities & Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.7153/mia-2020-23-19","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

Moen(2009)证明了多线性分数阶积分算子的加权估计。我们考虑了这些算子对径向函数和权值的加权估计,得到了较好的结果。我们的结果是De Napoli, Drelichman和Durán(2011)的结果的多线性变体。作为应用,我们得到了双线性Caffarelli-Kohn-Nirenberg不等式的改进。数学学科分类(2010):42B20。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Weighted estimates of multilinear fractional integral operators for radial functions
Moen (2009) proved weighted estimates for multilinear fractional integral operators. We consider weighted estimates of these operators for radial functions and power weights and obtain a better result. Our result is a multilinear variant of the one by De Napoli, Drelichman and Durán (2011). As applications, we get improvements of the bilinear Caffarelli-Kohn-Nirenberg’s inequality. Mathematics subject classification (2010): 42B20.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.30
自引率
10.00%
发文量
59
审稿时长
6-12 weeks
期刊介绍: ''Mathematical Inequalities & Applications'' (''MIA'') brings together original research papers in all areas of mathematics, provided they are concerned with inequalities or their role. From time to time ''MIA'' will publish invited survey articles. Short notes with interesting results or open problems will also be accepted. ''MIA'' is published quarterly, in January, April, July, and October.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信