2个连续的偏贝尔多项式

IF 0.4 Q4 MATHEMATICS
Meriem Tiachachat, M. Mihoubi
{"title":"2个连续的偏贝尔多项式","authors":"Meriem Tiachachat, M. Mihoubi","doi":"10.7546/nntdm.2023.29.3.538-544","DOIUrl":null,"url":null,"abstract":"In this paper, we discuss a new class of partial Bell polynomials. The first section gives an overview of partial Bell polynomials and their related 2-successive Stirling numbers. In the second section, we introduce the concept of 2-successive partial Bell polynomials. We give an explicit formula for computing these polynomials and establish their generating function. In addition, we derive several recurrence relations that govern the behaviour of these polynomials. Furthermore, we study specific cases to illustrate the applicability and versatility of this new class of polynomials.","PeriodicalId":44060,"journal":{"name":"Notes on Number Theory and Discrete Mathematics","volume":"1 1","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2023-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The 2-successive partial Bell polynomials\",\"authors\":\"Meriem Tiachachat, M. Mihoubi\",\"doi\":\"10.7546/nntdm.2023.29.3.538-544\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we discuss a new class of partial Bell polynomials. The first section gives an overview of partial Bell polynomials and their related 2-successive Stirling numbers. In the second section, we introduce the concept of 2-successive partial Bell polynomials. We give an explicit formula for computing these polynomials and establish their generating function. In addition, we derive several recurrence relations that govern the behaviour of these polynomials. Furthermore, we study specific cases to illustrate the applicability and versatility of this new class of polynomials.\",\"PeriodicalId\":44060,\"journal\":{\"name\":\"Notes on Number Theory and Discrete Mathematics\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2023-07-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Notes on Number Theory and Discrete Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7546/nntdm.2023.29.3.538-544\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Notes on Number Theory and Discrete Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7546/nntdm.2023.29.3.538-544","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文讨论了一类新的偏贝尔多项式。第一部分概述了部分贝尔多项式及其相关的2-连续斯特林数。在第二节中,我们介绍了2连续偏贝尔多项式的概念。给出了计算这些多项式的显式公式,并建立了它们的生成函数。此外,我们还推导了几个支配这些多项式行为的递归关系。此外,我们研究了具体的案例来说明这类新多项式的适用性和通用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The 2-successive partial Bell polynomials
In this paper, we discuss a new class of partial Bell polynomials. The first section gives an overview of partial Bell polynomials and their related 2-successive Stirling numbers. In the second section, we introduce the concept of 2-successive partial Bell polynomials. We give an explicit formula for computing these polynomials and establish their generating function. In addition, we derive several recurrence relations that govern the behaviour of these polynomials. Furthermore, we study specific cases to illustrate the applicability and versatility of this new class of polynomials.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
33.30%
发文量
71
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信