平面上谐振子轨道焦点轨迹问题的显式解

Pub Date : 2022-01-01 DOI:10.7546/jgsp-64-2022-29-37
Clementina D. Mladenova, Ivaïlo M. Mladenov
{"title":"平面上谐振子轨道焦点轨迹问题的显式解","authors":"Clementina D. Mladenova, Ivaïlo M. Mladenov","doi":"10.7546/jgsp-64-2022-29-37","DOIUrl":null,"url":null,"abstract":"Dynamical orbits of the harmonic oscillator potential in the plane are ellipses which depend on a real parameter. Some time ago in this journal it has been proven by purely geometrical methods that the locus of the focuses of these ellipses are Cassinian ovals. Here we present several explicit analytic parameterizations of these remarkable curves. Nominally, their forms depend on the magnitude of the initial distance from the center of attraction and the magnitude of the initial velocity. We have found a few parameterizations in which the roles of the size and shapes can be clearly distinguished.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Explicit Solution of the Focus Locus Problem for the Harmonic Oscillator Orbits in the Plane\",\"authors\":\"Clementina D. Mladenova, Ivaïlo M. Mladenov\",\"doi\":\"10.7546/jgsp-64-2022-29-37\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Dynamical orbits of the harmonic oscillator potential in the plane are ellipses which depend on a real parameter. Some time ago in this journal it has been proven by purely geometrical methods that the locus of the focuses of these ellipses are Cassinian ovals. Here we present several explicit analytic parameterizations of these remarkable curves. Nominally, their forms depend on the magnitude of the initial distance from the center of attraction and the magnitude of the initial velocity. We have found a few parameterizations in which the roles of the size and shapes can be clearly distinguished.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7546/jgsp-64-2022-29-37\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7546/jgsp-64-2022-29-37","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

谐振子势在平面上的动态轨道是依赖于实参数的椭圆。前段时间在本刊上,用纯几何方法证明了这些椭圆的焦点轨迹是卡西尼椭圆。这里我们给出了这些显著曲线的几个显式解析参数化。名义上,它们的形式取决于初始距离引力中心的大小和初始速度的大小。我们发现了一些参数化,其中大小和形状的作用可以清楚地区分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Explicit Solution of the Focus Locus Problem for the Harmonic Oscillator Orbits in the Plane
Dynamical orbits of the harmonic oscillator potential in the plane are ellipses which depend on a real parameter. Some time ago in this journal it has been proven by purely geometrical methods that the locus of the focuses of these ellipses are Cassinian ovals. Here we present several explicit analytic parameterizations of these remarkable curves. Nominally, their forms depend on the magnitude of the initial distance from the center of attraction and the magnitude of the initial velocity. We have found a few parameterizations in which the roles of the size and shapes can be clearly distinguished.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信