不定Kaehler流形的gcr -类光子流形

Pub Date : 2022-01-01 DOI:10.7546/jgsp-63-2022-21-37
V. Jain, R. Rani, Rakesh Kumar
{"title":"不定Kaehler流形的gcr -类光子流形","authors":"V. Jain, R. Rani, Rakesh Kumar","doi":"10.7546/jgsp-63-2022-21-37","DOIUrl":null,"url":null,"abstract":"We study generalized Cauchy-Riemann (GCR)-lightlike submanifolds of indefinite Kaehler manifolds admitting a quarter-symmetric non-metric connection. We derive a condition for a totally umbilical GCR-lightlike submanifold of indefinite Kaehler manifolds admitting a quarter-symmetric non-metric connection to be a totally geodesic submanifold. We study minimal GCR-lightlike submanifolds and obtain characterization theorem for a GCR-lightlike submanifold to be a GCR-lightlike product manifold.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"On GCR-Lightlike Submanifolds of Indefinite Kaehler Manifolds\",\"authors\":\"V. Jain, R. Rani, Rakesh Kumar\",\"doi\":\"10.7546/jgsp-63-2022-21-37\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study generalized Cauchy-Riemann (GCR)-lightlike submanifolds of indefinite Kaehler manifolds admitting a quarter-symmetric non-metric connection. We derive a condition for a totally umbilical GCR-lightlike submanifold of indefinite Kaehler manifolds admitting a quarter-symmetric non-metric connection to be a totally geodesic submanifold. We study minimal GCR-lightlike submanifolds and obtain characterization theorem for a GCR-lightlike submanifold to be a GCR-lightlike product manifold.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7546/jgsp-63-2022-21-37\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7546/jgsp-63-2022-21-37","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

研究了具有四分之一对称非度量联系的不定Kaehler流形的广义Cauchy-Riemann (GCR)-类光子流形。给出了无限Kaehler流形的完全脐带gcr -轻形子流形的一个条件,该条件允许四分之一对称非度量连接是完全测地线子流形。研究了最小gcr -类光子流形,得到了gcr -类光子流形为gcr -类光积流形的表征定理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
On GCR-Lightlike Submanifolds of Indefinite Kaehler Manifolds
We study generalized Cauchy-Riemann (GCR)-lightlike submanifolds of indefinite Kaehler manifolds admitting a quarter-symmetric non-metric connection. We derive a condition for a totally umbilical GCR-lightlike submanifold of indefinite Kaehler manifolds admitting a quarter-symmetric non-metric connection to be a totally geodesic submanifold. We study minimal GCR-lightlike submanifolds and obtain characterization theorem for a GCR-lightlike submanifold to be a GCR-lightlike product manifold.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信