三维闵可夫斯基空间中准坐标系下的费米-沃克平行输运

Pub Date : 2019-01-01 DOI:10.7546/jgsp-54-2019-1-12
N. Gürbüz, D. Yoon
{"title":"三维闵可夫斯基空间中准坐标系下的费米-沃克平行输运","authors":"N. Gürbüz, D. Yoon","doi":"10.7546/jgsp-54-2019-1-12","DOIUrl":null,"url":null,"abstract":"A relativistic observer ξ needs reference frames in order to measure the movement and position of a object. If ξ is free falling, its restspaces are transported with LeviCivita parallelism. For accelerated observes, the restspaces are not transported by the Levi-Civita parallelism. In this case Fermi-Walker parallelism is used to define constant directions. Fermi-Walker parallelism is an isometry between the tangent spaces along relativistic observer ξ. [6, 11]. Balakrishnan et al investigated time evolutions of the space curve associated with a geometric phase using Fermi-Walker parallel transport in three dimensional Euclidean space [2]. Gürbüz had introduced new geometric phases according three classes of a curve evolution in Minkowski space [7, 8]. Usual Fermi-Walker parallel derivative for any vector field A is given with respect to Frenet frame {t, n, b} in three dimensional Euclidean space as following (cf. [9]) DfA Dfs = dA","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fermi-Walker Parallel Transport According to Quasi Frame in Three Dimensional Minkowski Space\",\"authors\":\"N. Gürbüz, D. Yoon\",\"doi\":\"10.7546/jgsp-54-2019-1-12\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A relativistic observer ξ needs reference frames in order to measure the movement and position of a object. If ξ is free falling, its restspaces are transported with LeviCivita parallelism. For accelerated observes, the restspaces are not transported by the Levi-Civita parallelism. In this case Fermi-Walker parallelism is used to define constant directions. Fermi-Walker parallelism is an isometry between the tangent spaces along relativistic observer ξ. [6, 11]. Balakrishnan et al investigated time evolutions of the space curve associated with a geometric phase using Fermi-Walker parallel transport in three dimensional Euclidean space [2]. Gürbüz had introduced new geometric phases according three classes of a curve evolution in Minkowski space [7, 8]. Usual Fermi-Walker parallel derivative for any vector field A is given with respect to Frenet frame {t, n, b} in three dimensional Euclidean space as following (cf. [9]) DfA Dfs = dA\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7546/jgsp-54-2019-1-12\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7546/jgsp-54-2019-1-12","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

一个相对论观察者ξ需要参考系来测量一个物体的运动和位置。如果ξ是自由落体的,则其剩余空间以列维维塔平行度传输。对于加速观测,静止空间不受列维-奇维塔平行度的传输。在这种情况下,费米-沃克平行度被用来定义恒定方向。费米-沃克平行度是沿相对论观察者ξ的切空间之间的等距。(6, 11)。Balakrishnan等人利用三维欧几里得空间[2]中的费米-沃克平行输运研究了与几何相位相关的空间曲线的时间演化。g rb z根据Minkowski空间中曲线演化的三类引入了新的几何相[7,8]。通常在三维欧几里德空间中,任意向量场A对Frenet坐标系{t, n, b}的费米-沃克平行导数如下(cf. [9]) DfA Dfs = dA
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Fermi-Walker Parallel Transport According to Quasi Frame in Three Dimensional Minkowski Space
A relativistic observer ξ needs reference frames in order to measure the movement and position of a object. If ξ is free falling, its restspaces are transported with LeviCivita parallelism. For accelerated observes, the restspaces are not transported by the Levi-Civita parallelism. In this case Fermi-Walker parallelism is used to define constant directions. Fermi-Walker parallelism is an isometry between the tangent spaces along relativistic observer ξ. [6, 11]. Balakrishnan et al investigated time evolutions of the space curve associated with a geometric phase using Fermi-Walker parallel transport in three dimensional Euclidean space [2]. Gürbüz had introduced new geometric phases according three classes of a curve evolution in Minkowski space [7, 8]. Usual Fermi-Walker parallel derivative for any vector field A is given with respect to Frenet frame {t, n, b} in three dimensional Euclidean space as following (cf. [9]) DfA Dfs = dA
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信