类威尔摩能和带势的弹性曲线

Q4 Mathematics
Á. Pámpano
{"title":"类威尔摩能和带势的弹性曲线","authors":"Á. Pámpano","doi":"10.7546/giq-21-2020-232-241","DOIUrl":null,"url":null,"abstract":". We study invariant Willmore-like tori in total spaces of Killing submersions. In particular, using a relation with elastic curves with potentials in the base surfaces, we analyze Willmore tori in total spaces of Killing submersions. Finally, we apply our findings to construct foliations of these total spaces by constant mean curvature Willmore tori.","PeriodicalId":53425,"journal":{"name":"Geometry, Integrability and Quantization","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Willmore-Like Energies and Elastic Curves with Potential\",\"authors\":\"Á. Pámpano\",\"doi\":\"10.7546/giq-21-2020-232-241\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". We study invariant Willmore-like tori in total spaces of Killing submersions. In particular, using a relation with elastic curves with potentials in the base surfaces, we analyze Willmore tori in total spaces of Killing submersions. Finally, we apply our findings to construct foliations of these total spaces by constant mean curvature Willmore tori.\",\"PeriodicalId\":53425,\"journal\":{\"name\":\"Geometry, Integrability and Quantization\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geometry, Integrability and Quantization\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7546/giq-21-2020-232-241\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geometry, Integrability and Quantization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7546/giq-21-2020-232-241","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

. 研究了杀戮淹没总空间中的不变Willmore-like环面。特别地,我们利用基面上具有势的弹性曲线的关系,分析了杀戮淹没总空间中的Willmore环面。最后,我们应用我们的发现,用常平均曲率Willmore环面构造这些总空间的叶状。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Willmore-Like Energies and Elastic Curves with Potential
. We study invariant Willmore-like tori in total spaces of Killing submersions. In particular, using a relation with elastic curves with potentials in the base surfaces, we analyze Willmore tori in total spaces of Killing submersions. Finally, we apply our findings to construct foliations of these total spaces by constant mean curvature Willmore tori.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Geometry, Integrability and Quantization
Geometry, Integrability and Quantization Mathematics-Mathematical Physics
CiteScore
0.70
自引率
0.00%
发文量
4
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信