{"title":"类威尔摩能和带势的弹性曲线","authors":"Á. Pámpano","doi":"10.7546/giq-21-2020-232-241","DOIUrl":null,"url":null,"abstract":". We study invariant Willmore-like tori in total spaces of Killing submersions. In particular, using a relation with elastic curves with potentials in the base surfaces, we analyze Willmore tori in total spaces of Killing submersions. Finally, we apply our findings to construct foliations of these total spaces by constant mean curvature Willmore tori.","PeriodicalId":53425,"journal":{"name":"Geometry, Integrability and Quantization","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Willmore-Like Energies and Elastic Curves with Potential\",\"authors\":\"Á. Pámpano\",\"doi\":\"10.7546/giq-21-2020-232-241\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". We study invariant Willmore-like tori in total spaces of Killing submersions. In particular, using a relation with elastic curves with potentials in the base surfaces, we analyze Willmore tori in total spaces of Killing submersions. Finally, we apply our findings to construct foliations of these total spaces by constant mean curvature Willmore tori.\",\"PeriodicalId\":53425,\"journal\":{\"name\":\"Geometry, Integrability and Quantization\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geometry, Integrability and Quantization\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7546/giq-21-2020-232-241\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geometry, Integrability and Quantization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7546/giq-21-2020-232-241","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
Willmore-Like Energies and Elastic Curves with Potential
. We study invariant Willmore-like tori in total spaces of Killing submersions. In particular, using a relation with elastic curves with potentials in the base surfaces, we analyze Willmore tori in total spaces of Killing submersions. Finally, we apply our findings to construct foliations of these total spaces by constant mean curvature Willmore tori.