黎曼对称空间拉普拉斯谱与几何量化的关系

Pub Date : 2019-01-01 DOI:10.7546/JGSP-51-2019-9-28
D. Grantcharov, G. Grantcharov
{"title":"黎曼对称空间拉普拉斯谱与几何量化的关系","authors":"D. Grantcharov, G. Grantcharov","doi":"10.7546/JGSP-51-2019-9-28","DOIUrl":null,"url":null,"abstract":"Communicated by Ivaïlo M. Mladenov Abstract. We consider a modified Kostant-Souriau geometric quantization scheme due to Czyz and Hess for Hamiltonian systems on the cotangent bundles of compact rank-one Riemannian symmetric spaces (CROSS). It is used, together with a symplectic reduction process, to relate its energy spectrum to the spectrum of the Laplace-Beltrami operator. Moreover, the corresponding eigenspaces have real dimension equal to the complex dimension of the space of the holomorphic sections of the quantum bundle which is obtained after the quantization. The relation between the two constructions was first noticed by Mladenov and Tsanov for the case of the spheres. In addition to the CROSS case, we announce preliminary results related to the case of compact Riemannian symmetric spaces of higher rank.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Relations Between Laplace Spectra and Geometric Quantization of Reimannian Symmetric Spaces\",\"authors\":\"D. Grantcharov, G. Grantcharov\",\"doi\":\"10.7546/JGSP-51-2019-9-28\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Communicated by Ivaïlo M. Mladenov Abstract. We consider a modified Kostant-Souriau geometric quantization scheme due to Czyz and Hess for Hamiltonian systems on the cotangent bundles of compact rank-one Riemannian symmetric spaces (CROSS). It is used, together with a symplectic reduction process, to relate its energy spectrum to the spectrum of the Laplace-Beltrami operator. Moreover, the corresponding eigenspaces have real dimension equal to the complex dimension of the space of the holomorphic sections of the quantum bundle which is obtained after the quantization. The relation between the two constructions was first noticed by Mladenov and Tsanov for the case of the spheres. In addition to the CROSS case, we announce preliminary results related to the case of compact Riemannian symmetric spaces of higher rank.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7546/JGSP-51-2019-9-28\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7546/JGSP-51-2019-9-28","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

由Ivaïlo M. Mladenov传达摘要。考虑紧致列- 1黎曼对称空间(CROSS)的协切束上哈密顿系统的一种基于Czyz和Hess的改进Kostant-Souriau几何量化方案。它与辛约简过程一起使用,将其能谱与拉普拉斯-贝尔特拉米算子的能谱联系起来。相应的本征空间的实维数等于量子化后得到的量子束全纯截面空间的复维数。这两种结构之间的关系首先是由Mladenov和Tsanov在球体的情况下注意到的。除了交叉情况外,我们还公布了有关高秩紧黎曼对称空间情况的初步结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Relations Between Laplace Spectra and Geometric Quantization of Reimannian Symmetric Spaces
Communicated by Ivaïlo M. Mladenov Abstract. We consider a modified Kostant-Souriau geometric quantization scheme due to Czyz and Hess for Hamiltonian systems on the cotangent bundles of compact rank-one Riemannian symmetric spaces (CROSS). It is used, together with a symplectic reduction process, to relate its energy spectrum to the spectrum of the Laplace-Beltrami operator. Moreover, the corresponding eigenspaces have real dimension equal to the complex dimension of the space of the holomorphic sections of the quantum bundle which is obtained after the quantization. The relation between the two constructions was first noticed by Mladenov and Tsanov for the case of the spheres. In addition to the CROSS case, we announce preliminary results related to the case of compact Riemannian symmetric spaces of higher rank.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信