二阶欧几里得杀伤张量的新性质

Pub Date : 2019-01-01 DOI:10.7546/jgsp-51-2019-1-7
M. Crasmareanu
{"title":"二阶欧几里得杀伤张量的新性质","authors":"M. Crasmareanu","doi":"10.7546/jgsp-51-2019-1-7","DOIUrl":null,"url":null,"abstract":"A symmetric tensor field on a Riemannian manifold is called a Killing tensor field if the symmetric part of its covariant derivative is equal to zero. There exists a well-known bijection between Killing tensor fields and conserved quantities of the geodesic flow which depend polynomially on the momentum variables. In particular, Killing tensors of rank (or valence) two yields quadratic first integrals and we discuss some aspects of this process in Crasmareanu [7] from a dynamical point of view. Some classes of physical examples associated with the Euclidean 2D metric are provided in Crasmareanu and Baleanu [8].","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"New Properties of Euclidean Killing Tensors of Rank Two\",\"authors\":\"M. Crasmareanu\",\"doi\":\"10.7546/jgsp-51-2019-1-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A symmetric tensor field on a Riemannian manifold is called a Killing tensor field if the symmetric part of its covariant derivative is equal to zero. There exists a well-known bijection between Killing tensor fields and conserved quantities of the geodesic flow which depend polynomially on the momentum variables. In particular, Killing tensors of rank (or valence) two yields quadratic first integrals and we discuss some aspects of this process in Crasmareanu [7] from a dynamical point of view. Some classes of physical examples associated with the Euclidean 2D metric are provided in Crasmareanu and Baleanu [8].\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7546/jgsp-51-2019-1-7\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7546/jgsp-51-2019-1-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

黎曼流形上的对称张量场如果其协变导数的对称部分等于零,则称为杀戮张量场。在消张量场和测地线流的守恒量之间存在一个众所周知的双射,它多项式地依赖于动量变量。特别地,二阶(价)消张量产生二次一积分,我们从动力学的角度讨论了这一过程的一些方面。在Crasmareanu和Baleanu[8]中提供了一些与欧几里得二维度量相关的物理例子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
New Properties of Euclidean Killing Tensors of Rank Two
A symmetric tensor field on a Riemannian manifold is called a Killing tensor field if the symmetric part of its covariant derivative is equal to zero. There exists a well-known bijection between Killing tensor fields and conserved quantities of the geodesic flow which depend polynomially on the momentum variables. In particular, Killing tensors of rank (or valence) two yields quadratic first integrals and we discuss some aspects of this process in Crasmareanu [7] from a dynamical point of view. Some classes of physical examples associated with the Euclidean 2D metric are provided in Crasmareanu and Baleanu [8].
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信