B. Pejić, I. Bajić, K. Mačkić, D. Bugarski, S. Vlajić, A. Takač, M. Aksić
{"title":"基于蒸发量和参考蒸散量的辣椒灌溉调度策略","authors":"B. Pejić, I. Bajić, K. Mačkić, D. Bugarski, S. Vlajić, A. Takač, M. Aksić","doi":"10.5937/aaser2151069p","DOIUrl":null,"url":null,"abstract":"The experiment with drip irrigated pepper was conducted at the Rimski Šančevi experimental field of the Institute of Field and Vegetable Crops in Novi Sad in 2019. The irrigation was scheduled on the basis of the water balance method. Two methods were used to compute the daily evapotranspiration of pepper (ETd): reference evapotranspiration (ETo) and evaporation from an open water surface (Eo). Crop coefficients (kc) and corrective coefficients (k) were used to convert ETo and Eo values into ETd. Kc and k were 0.3-0.4, 0.6-0.7, 0.9-1.1, 0.8-0.9 and 0.4, 0.7, 1.0 and 0.8 for initial stage, crop development, mid season, and late season, respectively. ETo was calculated by the Hargreaves equation. Eo values were measured by a Class-A pan located at a meteorological station near the experimental plot. Irrigation started when readily available water (RAW) in the 0.3 m soil layer was completely absorbed by plants. Differences in crop yield (Y) and irrigation water use efficiency (IWUE) obtained using Eo (42.58 t ha-1, 15.20 kg m-3) and ETo (40.78 t ha-1, 14.56 kg m-3) were not statistically different. Evapotranspiration rate was 364.2 mm and 337.3 mm in Eo and ETo variant, respectively. The fact that the differences in Y and IWUE between different calculations of ETd were not statistically significant indicates that both methods can be recommended for irrigation scheduling programs for pepper in the climatic conditions of the Vojvodina region. However, priority should be given to ETo due to the easy accessibility and reliability of data.","PeriodicalId":31632,"journal":{"name":"Acta Agriculturae Serbica","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Irrigation scheduling strategies for pepper based on evaporation and reference evapotranspiration\",\"authors\":\"B. Pejić, I. Bajić, K. Mačkić, D. Bugarski, S. Vlajić, A. Takač, M. Aksić\",\"doi\":\"10.5937/aaser2151069p\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The experiment with drip irrigated pepper was conducted at the Rimski Šančevi experimental field of the Institute of Field and Vegetable Crops in Novi Sad in 2019. The irrigation was scheduled on the basis of the water balance method. Two methods were used to compute the daily evapotranspiration of pepper (ETd): reference evapotranspiration (ETo) and evaporation from an open water surface (Eo). Crop coefficients (kc) and corrective coefficients (k) were used to convert ETo and Eo values into ETd. Kc and k were 0.3-0.4, 0.6-0.7, 0.9-1.1, 0.8-0.9 and 0.4, 0.7, 1.0 and 0.8 for initial stage, crop development, mid season, and late season, respectively. ETo was calculated by the Hargreaves equation. Eo values were measured by a Class-A pan located at a meteorological station near the experimental plot. Irrigation started when readily available water (RAW) in the 0.3 m soil layer was completely absorbed by plants. Differences in crop yield (Y) and irrigation water use efficiency (IWUE) obtained using Eo (42.58 t ha-1, 15.20 kg m-3) and ETo (40.78 t ha-1, 14.56 kg m-3) were not statistically different. Evapotranspiration rate was 364.2 mm and 337.3 mm in Eo and ETo variant, respectively. The fact that the differences in Y and IWUE between different calculations of ETd were not statistically significant indicates that both methods can be recommended for irrigation scheduling programs for pepper in the climatic conditions of the Vojvodina region. However, priority should be given to ETo due to the easy accessibility and reliability of data.\",\"PeriodicalId\":31632,\"journal\":{\"name\":\"Acta Agriculturae Serbica\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Agriculturae Serbica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5937/aaser2151069p\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Agriculturae Serbica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5937/aaser2151069p","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
摘要
滴灌辣椒试验于2019年在诺维萨德大田和蔬菜作物研究所的Rimski Šančevi试验田进行。根据水量平衡法进行灌溉调度。采用参考蒸散发(ETo)和开放水面蒸散发(Eo)两种方法计算辣椒的日蒸散发。利用作物系数(kc)和校正系数(k)将ETo和Eo值转换为ETd。初熟期、作物生育期、季中、晚熟期的Kc和k值分别为0.3 ~ 0.4、0.6 ~ 0.7、0.9 ~ 1.1、0.8 ~ 0.9和0.4、0.7、1.0和0.8。ETo由哈格里夫斯方程计算。Eo值由设在试验田附近气象站的a类平底锅测量。当0.3 m土层的有效水分(RAW)被植物完全吸收后,开始灌溉。Eo (42.58 t ha-1, 15.20 kg m-3)和ETo (40.78 t ha-1, 14.56 kg m-3)处理的作物产量(Y)和灌溉水分利用效率(IWUE)差异无统计学意义。Eo和ETo变异的蒸散速率分别为364.2 mm和337.3 mm。不同ETd计算方法的Y值和IWUE值差异无统计学意义,说明在伏伊伏丁那地区的气候条件下,这两种方法都可以作为辣椒灌溉调度方案的推荐方法。然而,由于数据的易访问性和可靠性,应优先考虑ETo。
Irrigation scheduling strategies for pepper based on evaporation and reference evapotranspiration
The experiment with drip irrigated pepper was conducted at the Rimski Šančevi experimental field of the Institute of Field and Vegetable Crops in Novi Sad in 2019. The irrigation was scheduled on the basis of the water balance method. Two methods were used to compute the daily evapotranspiration of pepper (ETd): reference evapotranspiration (ETo) and evaporation from an open water surface (Eo). Crop coefficients (kc) and corrective coefficients (k) were used to convert ETo and Eo values into ETd. Kc and k were 0.3-0.4, 0.6-0.7, 0.9-1.1, 0.8-0.9 and 0.4, 0.7, 1.0 and 0.8 for initial stage, crop development, mid season, and late season, respectively. ETo was calculated by the Hargreaves equation. Eo values were measured by a Class-A pan located at a meteorological station near the experimental plot. Irrigation started when readily available water (RAW) in the 0.3 m soil layer was completely absorbed by plants. Differences in crop yield (Y) and irrigation water use efficiency (IWUE) obtained using Eo (42.58 t ha-1, 15.20 kg m-3) and ETo (40.78 t ha-1, 14.56 kg m-3) were not statistically different. Evapotranspiration rate was 364.2 mm and 337.3 mm in Eo and ETo variant, respectively. The fact that the differences in Y and IWUE between different calculations of ETd were not statistically significant indicates that both methods can be recommended for irrigation scheduling programs for pepper in the climatic conditions of the Vojvodina region. However, priority should be given to ETo due to the easy accessibility and reliability of data.