Exton双超几何X函数的泛函界

IF 1.1 3区 数学 Q1 MATHEMATICS
Dragana Jankov Maširević, T. Pogány
{"title":"Exton双超几何X函数的泛函界","authors":"Dragana Jankov Maširević, T. Pogány","doi":"10.7153/jmi-2023-17-18","DOIUrl":null,"url":null,"abstract":". Functional and uniform bounds for Exton’s generalized hypergeometric X function of two variables and an associated incomplete Lipschitz–Hankel integral, as an auxiliary result, are obtained. A by-product for the Srivastava-Daoust generalized hypergeometric function of three variables is given by another derivation method. The main tools are certain representation formulae for the McKay I ν Bessel probability distribution’s cumulative distribution function established recently in [3,5].","PeriodicalId":49165,"journal":{"name":"Journal of Mathematical Inequalities","volume":"1 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Functional bounds for Exton's double hypergeometric X function\",\"authors\":\"Dragana Jankov Maširević, T. Pogány\",\"doi\":\"10.7153/jmi-2023-17-18\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". Functional and uniform bounds for Exton’s generalized hypergeometric X function of two variables and an associated incomplete Lipschitz–Hankel integral, as an auxiliary result, are obtained. A by-product for the Srivastava-Daoust generalized hypergeometric function of three variables is given by another derivation method. The main tools are certain representation formulae for the McKay I ν Bessel probability distribution’s cumulative distribution function established recently in [3,5].\",\"PeriodicalId\":49165,\"journal\":{\"name\":\"Journal of Mathematical Inequalities\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematical Inequalities\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.7153/jmi-2023-17-18\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Inequalities","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.7153/jmi-2023-17-18","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

. 作为辅助结果,得到了Exton广义超几何X函数的泛函界和一致界,以及相应的不完全Lipschitz-Hankel积分。用另一种求导方法给出了Srivastava-Daoust广义三变量超几何函数的副产物。主要工具是最近在[3,5]中建立的McKay I ν Bessel概率分布的累积分布函数的某些表示公式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Functional bounds for Exton's double hypergeometric X function
. Functional and uniform bounds for Exton’s generalized hypergeometric X function of two variables and an associated incomplete Lipschitz–Hankel integral, as an auxiliary result, are obtained. A by-product for the Srivastava-Daoust generalized hypergeometric function of three variables is given by another derivation method. The main tools are certain representation formulae for the McKay I ν Bessel probability distribution’s cumulative distribution function established recently in [3,5].
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Mathematical Inequalities
Journal of Mathematical Inequalities MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
2.90
自引率
3.40%
发文量
56
审稿时长
6-12 weeks
期刊介绍: The ''Journal of Mathematical Inequalities'' (''JMI'') presents carefully selected original research articles from all areas of pure and applied mathematics, provided they are concerned with mathematical inequalities and their numerous applications. ''JMI'' will also periodically publish invited survey articles and short notes with interesting results treating the theory of inequalities, as well as relevant book reviews. Only articles written in the English language and in a lucid, expository style will be considered for publication. ''JMI'' primary audience are pure mathematicians, applied mathemathicians and numerical analysts. ''JMI'' is published quarterly; in March, June, September, and December.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信