关于局部Ritt可解条件

IF 1.1 3区 数学 Q1 MATHEMATICS
Abdellah Akrym, A. El Bakkali
{"title":"关于局部Ritt可解条件","authors":"Abdellah Akrym, A. El Bakkali","doi":"10.7153/jmi-2023-17-16","DOIUrl":null,"url":null,"abstract":". Let T be a linear bounded operator on a complex Banach space X . In this paper, we introduce a local version of the Ritt resolvent condition [ LR ] for Banach space operators T . We start by showing that this concept is weaker than the classical Ritt condition [ R ] . We prove that, for operators with single-valued extension property (SVEP), estimate [ LR ] extends, with a larger constant, to some sector K δ . Moreover, by extending some Ritt’s theorems to the local case for operators with the SVEP, several characterizations of the local sublinear decay of T n − T n + 1 have been established.","PeriodicalId":49165,"journal":{"name":"Journal of Mathematical Inequalities","volume":"1 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the local Ritt resolvent condition\",\"authors\":\"Abdellah Akrym, A. El Bakkali\",\"doi\":\"10.7153/jmi-2023-17-16\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". Let T be a linear bounded operator on a complex Banach space X . In this paper, we introduce a local version of the Ritt resolvent condition [ LR ] for Banach space operators T . We start by showing that this concept is weaker than the classical Ritt condition [ R ] . We prove that, for operators with single-valued extension property (SVEP), estimate [ LR ] extends, with a larger constant, to some sector K δ . Moreover, by extending some Ritt’s theorems to the local case for operators with the SVEP, several characterizations of the local sublinear decay of T n − T n + 1 have been established.\",\"PeriodicalId\":49165,\"journal\":{\"name\":\"Journal of Mathematical Inequalities\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematical Inequalities\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.7153/jmi-2023-17-16\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Inequalities","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.7153/jmi-2023-17-16","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

. 设T是复巴拿赫空间X上的一个线性有界算子。在本文中,我们引入了Banach空间算子T的Ritt可解条件[LR]的一个局部版本。我们首先证明这个概念比经典的Ritt条件弱[R]。我们证明了对于具有单值可拓性的算子,估计[LR]以更大的常数扩展到某个扇区K δ。此外,通过将一些Ritt定理推广到具有SVEP算子的局部情形,建立了T n−T n + 1的局部次线性衰减的几个特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the local Ritt resolvent condition
. Let T be a linear bounded operator on a complex Banach space X . In this paper, we introduce a local version of the Ritt resolvent condition [ LR ] for Banach space operators T . We start by showing that this concept is weaker than the classical Ritt condition [ R ] . We prove that, for operators with single-valued extension property (SVEP), estimate [ LR ] extends, with a larger constant, to some sector K δ . Moreover, by extending some Ritt’s theorems to the local case for operators with the SVEP, several characterizations of the local sublinear decay of T n − T n + 1 have been established.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Mathematical Inequalities
Journal of Mathematical Inequalities MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
2.90
自引率
3.40%
发文量
56
审稿时长
6-12 weeks
期刊介绍: The ''Journal of Mathematical Inequalities'' (''JMI'') presents carefully selected original research articles from all areas of pure and applied mathematics, provided they are concerned with mathematical inequalities and their numerous applications. ''JMI'' will also periodically publish invited survey articles and short notes with interesting results treating the theory of inequalities, as well as relevant book reviews. Only articles written in the English language and in a lucid, expository style will be considered for publication. ''JMI'' primary audience are pure mathematicians, applied mathemathicians and numerical analysts. ''JMI'' is published quarterly; in March, June, September, and December.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信