Riemann-Liouville分数积分型Szász-Mirakyan-Kantorovich算子的近似性质

IF 1.1 3区 数学 Q1 MATHEMATICS
Nazim Mahhmudov, M. Kara
{"title":"Riemann-Liouville分数积分型Szász-Mirakyan-Kantorovich算子的近似性质","authors":"Nazim Mahhmudov, M. Kara","doi":"10.7153/jmi-2022-16-86","DOIUrl":null,"url":null,"abstract":". In the present paper, we introduce the Riemann-Liouville fractional integral type Sz´asz- Mirakyan-Kantorovich operators. We investigate the order of convergence by using Lipschitz-type maximal functions, second order modulus of smoothness and Peetre’s K-functional. Weigh- ted approximation properties of these operators in terms of modulus of continuity have been dis-cussed. Then, Vorononskaja-type type theorem are obtained. Moreover, bivariate the Riemann- Liouville fractional integral type Sz´asz-Mirakyan-Kantorovich operators are constructed. The last section is devoted to graphical representation and numerical results for these operators.","PeriodicalId":49165,"journal":{"name":"Journal of Mathematical Inequalities","volume":"1 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Approximation properties of the Riemann-Liouville fractional integral type Szász-Mirakyan-Kantorovich operators\",\"authors\":\"Nazim Mahhmudov, M. Kara\",\"doi\":\"10.7153/jmi-2022-16-86\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". In the present paper, we introduce the Riemann-Liouville fractional integral type Sz´asz- Mirakyan-Kantorovich operators. We investigate the order of convergence by using Lipschitz-type maximal functions, second order modulus of smoothness and Peetre’s K-functional. Weigh- ted approximation properties of these operators in terms of modulus of continuity have been dis-cussed. Then, Vorononskaja-type type theorem are obtained. Moreover, bivariate the Riemann- Liouville fractional integral type Sz´asz-Mirakyan-Kantorovich operators are constructed. The last section is devoted to graphical representation and numerical results for these operators.\",\"PeriodicalId\":49165,\"journal\":{\"name\":\"Journal of Mathematical Inequalities\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematical Inequalities\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.7153/jmi-2022-16-86\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Inequalities","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.7153/jmi-2022-16-86","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

。本文引入了Riemann-Liouville分数阶积分型Sz´asz- Mirakyan-Kantorovich算子。利用lipschitz型极大函数、二阶光滑模和Peetre的k泛函研究了收敛的阶数。讨论了这些算子在连续模方面的加权逼近性质。然后,得到了vorononskaja型型定理。此外,构造了二元Riemann- Liouville分数积分型Sz´asz-Mirakyan-Kantorovich算子。最后一节专门讨论这些运算符的图形表示和数值结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Approximation properties of the Riemann-Liouville fractional integral type Szász-Mirakyan-Kantorovich operators
. In the present paper, we introduce the Riemann-Liouville fractional integral type Sz´asz- Mirakyan-Kantorovich operators. We investigate the order of convergence by using Lipschitz-type maximal functions, second order modulus of smoothness and Peetre’s K-functional. Weigh- ted approximation properties of these operators in terms of modulus of continuity have been dis-cussed. Then, Vorononskaja-type type theorem are obtained. Moreover, bivariate the Riemann- Liouville fractional integral type Sz´asz-Mirakyan-Kantorovich operators are constructed. The last section is devoted to graphical representation and numerical results for these operators.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Mathematical Inequalities
Journal of Mathematical Inequalities MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
2.90
自引率
3.40%
发文量
56
审稿时长
6-12 weeks
期刊介绍: The ''Journal of Mathematical Inequalities'' (''JMI'') presents carefully selected original research articles from all areas of pure and applied mathematics, provided they are concerned with mathematical inequalities and their numerous applications. ''JMI'' will also periodically publish invited survey articles and short notes with interesting results treating the theory of inequalities, as well as relevant book reviews. Only articles written in the English language and in a lucid, expository style will be considered for publication. ''JMI'' primary audience are pure mathematicians, applied mathemathicians and numerical analysts. ''JMI'' is published quarterly; in March, June, September, and December.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信