第一类修正贝塞尔函数中Toader-Qi均值的新锐界

IF 1.1 3区 数学 Q1 MATHEMATICS
Cen Li, Zhi-Ming Liu, Shenzhou Zheng
{"title":"第一类修正贝塞尔函数中Toader-Qi均值的新锐界","authors":"Cen Li, Zhi-Ming Liu, Shenzhou Zheng","doi":"10.7153/jmi-2022-16-44","DOIUrl":null,"url":null,"abstract":"Let A(a,b) , G(a,b) , L (a,b) and TQ(a,b) be the arithmetic, geometric, logarithmic and Toader-Qi means of a,b > 0 with a = b , respectively. Let Iv (x) be the modified Bessel functions of the first kind of order v . We prove the double inequality √ sinh t t Uq (t) < I0 (t) < √ sinh t t Up (t) holds for t > 0 , or equivalently, √ L (a,b)Uq (a,b) < TQ(a,b) < √ L (a,b)Up (a,b), holds for a,b > 0 with a = b , if and only if p 11/15 and 0 < q 2/π , where Up (t) = pcosh t−4 ( p− 2 3 )","PeriodicalId":49165,"journal":{"name":"Journal of Mathematical Inequalities","volume":"1 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"On new sharp bounds for the Toader-Qi mean involved in the modified Bessel functions of the first kind\",\"authors\":\"Cen Li, Zhi-Ming Liu, Shenzhou Zheng\",\"doi\":\"10.7153/jmi-2022-16-44\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let A(a,b) , G(a,b) , L (a,b) and TQ(a,b) be the arithmetic, geometric, logarithmic and Toader-Qi means of a,b > 0 with a = b , respectively. Let Iv (x) be the modified Bessel functions of the first kind of order v . We prove the double inequality √ sinh t t Uq (t) < I0 (t) < √ sinh t t Up (t) holds for t > 0 , or equivalently, √ L (a,b)Uq (a,b) < TQ(a,b) < √ L (a,b)Up (a,b), holds for a,b > 0 with a = b , if and only if p 11/15 and 0 < q 2/π , where Up (t) = pcosh t−4 ( p− 2 3 )\",\"PeriodicalId\":49165,\"journal\":{\"name\":\"Journal of Mathematical Inequalities\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematical Inequalities\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.7153/jmi-2022-16-44\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Inequalities","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.7153/jmi-2022-16-44","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

设A(A,b)、G(A,b)、L (A,b)和TQ(A,b)分别为A,b和b的算术均值、几何均值、对数均值和Toader-Qi均值。设Iv (x)是第一类v阶的修正贝塞尔函数。我们证明了二重不等式√sinh t t Uq (t) < I0 (t) <√sinh t t Up (t)对t >成立,或者等价地,√L (a,b)Uq (a,b) < TQ(a,b) <√L (a,b)Up (a,b),当且仅当p 11/15和0 < q 2/π,其中Up (t) = pcosh t−4 (p−2 3),当a = b时,对a,b >成立。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On new sharp bounds for the Toader-Qi mean involved in the modified Bessel functions of the first kind
Let A(a,b) , G(a,b) , L (a,b) and TQ(a,b) be the arithmetic, geometric, logarithmic and Toader-Qi means of a,b > 0 with a = b , respectively. Let Iv (x) be the modified Bessel functions of the first kind of order v . We prove the double inequality √ sinh t t Uq (t) < I0 (t) < √ sinh t t Up (t) holds for t > 0 , or equivalently, √ L (a,b)Uq (a,b) < TQ(a,b) < √ L (a,b)Up (a,b), holds for a,b > 0 with a = b , if and only if p 11/15 and 0 < q 2/π , where Up (t) = pcosh t−4 ( p− 2 3 )
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Mathematical Inequalities
Journal of Mathematical Inequalities MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
2.90
自引率
3.40%
发文量
56
审稿时长
6-12 weeks
期刊介绍: The ''Journal of Mathematical Inequalities'' (''JMI'') presents carefully selected original research articles from all areas of pure and applied mathematics, provided they are concerned with mathematical inequalities and their numerous applications. ''JMI'' will also periodically publish invited survey articles and short notes with interesting results treating the theory of inequalities, as well as relevant book reviews. Only articles written in the English language and in a lucid, expository style will be considered for publication. ''JMI'' primary audience are pure mathematicians, applied mathemathicians and numerical analysts. ''JMI'' is published quarterly; in March, June, September, and December.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信