{"title":"第n次幂型Toader均值n=-1,1,3的最优Lehmer均值界","authors":"Tie-hong Zhao, Hong-Hu Chu, Yuming Chu","doi":"10.7153/jmi-2022-16-12","DOIUrl":null,"url":null,"abstract":"In the article, we prove that λ1 = 0 , μ1 = 5/8 , λ2 = −1/8 , μ2 = 0 , λ3 = −1 and μ3 = −7/8 are the best possible parameters such that the double inequalities Lλ1 (a,b) < T3(a,b) < Lμ1 (a,b), Lλ2 (a,b) < T1(a,b) < Lμ2 (a,b), Lλ3 (a,b) < T−1(a,b) < Lμ3 (a,b) hold for a,b > 0 with a = b , and provide new bounds for the complete elliptic integral of the second kind E (r) = ∫ π/2 0 (1− r2 sin2 θ )1/2dθ on the interval (0,1) , where Lp(a,b) = (ap+1 + bp+1)/(ap +bp) is the p -th Lehmer mean and Tn(a,b) = ( 2 π ∫ π/2 0 √ an cos2 θ +bn sin2 θdθ )2/n is the n th power-type Toader mean. Mathematics subject classification (2020): 26E60, 33E05.","PeriodicalId":49165,"journal":{"name":"Journal of Mathematical Inequalities","volume":"1 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"29","resultStr":"{\"title\":\"Optimal Lehmer mean bounds for the $n$th power-type Toader means of n=-1,1,3\",\"authors\":\"Tie-hong Zhao, Hong-Hu Chu, Yuming Chu\",\"doi\":\"10.7153/jmi-2022-16-12\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the article, we prove that λ1 = 0 , μ1 = 5/8 , λ2 = −1/8 , μ2 = 0 , λ3 = −1 and μ3 = −7/8 are the best possible parameters such that the double inequalities Lλ1 (a,b) < T3(a,b) < Lμ1 (a,b), Lλ2 (a,b) < T1(a,b) < Lμ2 (a,b), Lλ3 (a,b) < T−1(a,b) < Lμ3 (a,b) hold for a,b > 0 with a = b , and provide new bounds for the complete elliptic integral of the second kind E (r) = ∫ π/2 0 (1− r2 sin2 θ )1/2dθ on the interval (0,1) , where Lp(a,b) = (ap+1 + bp+1)/(ap +bp) is the p -th Lehmer mean and Tn(a,b) = ( 2 π ∫ π/2 0 √ an cos2 θ +bn sin2 θdθ )2/n is the n th power-type Toader mean. Mathematics subject classification (2020): 26E60, 33E05.\",\"PeriodicalId\":49165,\"journal\":{\"name\":\"Journal of Mathematical Inequalities\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"29\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematical Inequalities\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.7153/jmi-2022-16-12\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Inequalities","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.7153/jmi-2022-16-12","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 29
摘要
在这篇文章中,我们证明λ1 = 0,μ1 = 5/8,λ2 =−1/8,μ2 = 0,λ3 =−1和μ3 =−7/8是最好的参数,这样双重的不平等Lλ1 (a, b) < T3 (a, b) < Lμ1 (a、b), Lλ2 (a, b) < T1 (a, b) < Lμ2 (a, b), Lλ3 (a, b) < T−1 (a, b) < Lμ3 (a, b)保持b > 0 = b,并提供完整的新界限第二类椭圆积分E (r) =∫π/ 2 0(1−r2 sin2θ)dθ的间隔(0,1),其中Lp(a,b) = (ap+1 +bp +1)/(ap +bp)为p - Lehmer均值,Tn(a,b) = (2 π∫π/2 0√and cos2 θ +bn sin2 θdθ)2/n为n次幂型Toader均值。数学学科分类(2020):26E60, 33E05。
Optimal Lehmer mean bounds for the $n$th power-type Toader means of n=-1,1,3
In the article, we prove that λ1 = 0 , μ1 = 5/8 , λ2 = −1/8 , μ2 = 0 , λ3 = −1 and μ3 = −7/8 are the best possible parameters such that the double inequalities Lλ1 (a,b) < T3(a,b) < Lμ1 (a,b), Lλ2 (a,b) < T1(a,b) < Lμ2 (a,b), Lλ3 (a,b) < T−1(a,b) < Lμ3 (a,b) hold for a,b > 0 with a = b , and provide new bounds for the complete elliptic integral of the second kind E (r) = ∫ π/2 0 (1− r2 sin2 θ )1/2dθ on the interval (0,1) , where Lp(a,b) = (ap+1 + bp+1)/(ap +bp) is the p -th Lehmer mean and Tn(a,b) = ( 2 π ∫ π/2 0 √ an cos2 θ +bn sin2 θdθ )2/n is the n th power-type Toader mean. Mathematics subject classification (2020): 26E60, 33E05.
期刊介绍:
The ''Journal of Mathematical Inequalities'' (''JMI'') presents carefully selected original research articles from all areas of pure and applied mathematics, provided they are concerned with mathematical inequalities and their numerous applications. ''JMI'' will also periodically publish invited survey articles and short notes with interesting results treating the theory of inequalities, as well as relevant book reviews. Only articles written in the English language and in a lucid, expository style will be considered for publication. ''JMI'' primary audience are pure mathematicians, applied mathemathicians and numerical analysts.
''JMI'' is published quarterly; in March, June, September, and December.