变温不完全混合空气室内空调的自调节控制

Q4 Computer Science
K. Ku, T. S. Liu
{"title":"变温不完全混合空气室内空调的自调节控制","authors":"K. Ku, T. S. Liu","doi":"10.5875/AUSMT.V6I3.972","DOIUrl":null,"url":null,"abstract":"This study aims to control indoor temperatures in an air-conditioned room to ensure the occupant’s thermal comfort while minimizing energy consumption. In the literature, controlled simulations of air conditioning systems usually assume that the indoor air is perfectly mixed. This assumption provides little information on spatial temperature and air flow. By contrast, this study deals with imperfectly mixed air. A computational fluid dynamics method is used to model an air-conditioned room and links this model with controllers. A self-tuning controller can monitor plant changes based on recursive estimation and adjusts control parameters to meet desired performance. Therefore, this study develops self-tuning controllers to control room temperature. Disturbances of varying temperature are exerted to investigate control performance. This paper compares the performance of a self-tuning linear quadratic controller and a self-tuning proportional-integral-derivative (PID) controller. Simulation results show that both controllers track desired temperatures well. Compared with the self-tuning PID controller, the self-tuning linear quadratic controller yields less overshoot with a slower response. The proposed method in this study is validated by experimental results.","PeriodicalId":38109,"journal":{"name":"International Journal of Automation and Smart Technology","volume":"6 1","pages":"153-161"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Self-tuning Control for Air Conditioning in a Room with Varying Temperature and Imperfectly Mixed Air\",\"authors\":\"K. Ku, T. S. Liu\",\"doi\":\"10.5875/AUSMT.V6I3.972\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study aims to control indoor temperatures in an air-conditioned room to ensure the occupant’s thermal comfort while minimizing energy consumption. In the literature, controlled simulations of air conditioning systems usually assume that the indoor air is perfectly mixed. This assumption provides little information on spatial temperature and air flow. By contrast, this study deals with imperfectly mixed air. A computational fluid dynamics method is used to model an air-conditioned room and links this model with controllers. A self-tuning controller can monitor plant changes based on recursive estimation and adjusts control parameters to meet desired performance. Therefore, this study develops self-tuning controllers to control room temperature. Disturbances of varying temperature are exerted to investigate control performance. This paper compares the performance of a self-tuning linear quadratic controller and a self-tuning proportional-integral-derivative (PID) controller. Simulation results show that both controllers track desired temperatures well. Compared with the self-tuning PID controller, the self-tuning linear quadratic controller yields less overshoot with a slower response. The proposed method in this study is validated by experimental results.\",\"PeriodicalId\":38109,\"journal\":{\"name\":\"International Journal of Automation and Smart Technology\",\"volume\":\"6 1\",\"pages\":\"153-161\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Automation and Smart Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5875/AUSMT.V6I3.972\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Automation and Smart Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5875/AUSMT.V6I3.972","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0

摘要

本研究旨在控制空调房间的室内温度,以确保居住者的热舒适,同时最大限度地减少能源消耗。在文献中,空调系统的受控模拟通常假设室内空气完全混合。这个假设提供的空间温度和气流信息很少。相比之下,这项研究处理的是不完全混合的空气。采用计算流体力学方法对空调房间进行建模,并与控制器连接。自整定控制器可以基于递归估计监测对象的变化,并调整控制参数以满足期望的性能。因此,本研究开发自整定控制器来控制室温。利用温度变化的扰动来研究控制性能。本文比较了自整定线性二次型控制器与自整定比例-积分-导数(PID)控制器的性能。仿真结果表明,两种控制器都能很好地跟踪所需温度。与自整定PID控制器相比,自整定线性二次型控制器的超调量较小,响应速度较慢。实验结果验证了本文方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Self-tuning Control for Air Conditioning in a Room with Varying Temperature and Imperfectly Mixed Air
This study aims to control indoor temperatures in an air-conditioned room to ensure the occupant’s thermal comfort while minimizing energy consumption. In the literature, controlled simulations of air conditioning systems usually assume that the indoor air is perfectly mixed. This assumption provides little information on spatial temperature and air flow. By contrast, this study deals with imperfectly mixed air. A computational fluid dynamics method is used to model an air-conditioned room and links this model with controllers. A self-tuning controller can monitor plant changes based on recursive estimation and adjusts control parameters to meet desired performance. Therefore, this study develops self-tuning controllers to control room temperature. Disturbances of varying temperature are exerted to investigate control performance. This paper compares the performance of a self-tuning linear quadratic controller and a self-tuning proportional-integral-derivative (PID) controller. Simulation results show that both controllers track desired temperatures well. Compared with the self-tuning PID controller, the self-tuning linear quadratic controller yields less overshoot with a slower response. The proposed method in this study is validated by experimental results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Automation and Smart Technology
International Journal of Automation and Smart Technology Engineering-Electrical and Electronic Engineering
CiteScore
0.70
自引率
0.00%
发文量
0
审稿时长
16 weeks
期刊介绍: International Journal of Automation and Smart Technology (AUSMT) is a peer-reviewed, open-access journal devoted to publishing research papers in the fields of automation and smart technology. Currently, the journal is abstracted in Scopus, INSPEC and DOAJ (Directory of Open Access Journals). The research areas of the journal include but are not limited to the fields of mechatronics, automation, ambient Intelligence, sensor networks, human-computer interfaces, and robotics. These technologies should be developed with the major purpose to increase the quality of life as well as to work towards environmental, economic and social sustainability for future generations. AUSMT endeavors to provide a worldwide forum for the dynamic exchange of ideas and findings from research of different disciplines from around the world. Also, AUSMT actively seeks to encourage interaction and cooperation between academia and industry along the fields of automation and smart technology. For the aforementioned purposes, AUSMT maps out 5 areas of interests. Each of them represents a pillar for better future life: - Intelligent Automation Technology. - Ambient Intelligence, Context Awareness, and Sensor Networks. - Human-Computer Interface. - Optomechatronic Modules and Systems. - Robotics, Intelligent Devices and Systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信