光滑投影曲线上的$\hat{G}$-局部系统是潜在自同构的

IF 5.4 3区 材料科学 Q2 CHEMISTRY, PHYSICAL
Gebhard Bockle, M. Harris, Chandrashekhar B. Khare, J. Thorne
{"title":"光滑投影曲线上的$\\hat{G}$-局部系统是潜在自同构的","authors":"Gebhard Bockle, M. Harris, Chandrashekhar B. Khare, J. Thorne","doi":"10.4310/acta.2019.v223.n1.a1","DOIUrl":null,"url":null,"abstract":"Let $X$ be a smooth, projective, geometrically connected curve over a finite field $\\mathbb{F}_q$, and let $G$ be a split semisimple algebraic group over $\\mathbb{F}_q$. Its dual group $\\widehat{G}$ is a split reductive group over $\\mathbb{Z}$. Conjecturally, any $l$-adic $\\widehat{G}$-local system on $X$ (equivalently, any conjugacy class of continuous homomorphisms $\\pi_1(X) \\to \\widehat{G}(\\overline{\\mathbb{Q}}_l)$) should be associated to an everywhere unramified automorphic representation of the group $G$. \nWe show that for any homomorphism $\\pi_1(X) \\to \\widehat{G}(\\overline{\\mathbb{Q}}_l)$ of Zariski dense image, there exists a finite Galois cover $Y \\to X$ over which the associated local system becomes automorphic.","PeriodicalId":4,"journal":{"name":"ACS Applied Energy Materials","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2016-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"40","resultStr":"{\"title\":\"$\\\\hat{G}$-local systems on smooth projective curves are potentially automorphic\",\"authors\":\"Gebhard Bockle, M. Harris, Chandrashekhar B. Khare, J. Thorne\",\"doi\":\"10.4310/acta.2019.v223.n1.a1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $X$ be a smooth, projective, geometrically connected curve over a finite field $\\\\mathbb{F}_q$, and let $G$ be a split semisimple algebraic group over $\\\\mathbb{F}_q$. Its dual group $\\\\widehat{G}$ is a split reductive group over $\\\\mathbb{Z}$. Conjecturally, any $l$-adic $\\\\widehat{G}$-local system on $X$ (equivalently, any conjugacy class of continuous homomorphisms $\\\\pi_1(X) \\\\to \\\\widehat{G}(\\\\overline{\\\\mathbb{Q}}_l)$) should be associated to an everywhere unramified automorphic representation of the group $G$. \\nWe show that for any homomorphism $\\\\pi_1(X) \\\\to \\\\widehat{G}(\\\\overline{\\\\mathbb{Q}}_l)$ of Zariski dense image, there exists a finite Galois cover $Y \\\\to X$ over which the associated local system becomes automorphic.\",\"PeriodicalId\":4,\"journal\":{\"name\":\"ACS Applied Energy Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2016-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"40\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Energy Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/acta.2019.v223.n1.a1\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Energy Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/acta.2019.v223.n1.a1","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 40

摘要

设$X$是有限域$\mathbb{F}_q$上的光滑、射影、几何连接的曲线,设$G$是$\mathbb{F}_q$上的分裂半单代数群。它的双基团$\widehat{G}$是$\mathbb{Z}$上的一个分裂还原基团。从推测上讲,$X$上的任何$l$ -adic $\widehat{G}$ -local系统(等价地,连续同态的任何共轭类$\pi_1(X) \to \widehat{G}(\overline{\mathbb{Q}}_l)$)都应该与群$G$的处处非分支自同构表示相关联。我们证明了对于Zariski稠密像的任意同态$\pi_1(X) \to \widehat{G}(\overline{\mathbb{Q}}_l)$,存在一个有限的伽罗瓦覆盖$Y \to X$,在该盖上相关的局部系统成为自同态。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
$\hat{G}$-local systems on smooth projective curves are potentially automorphic
Let $X$ be a smooth, projective, geometrically connected curve over a finite field $\mathbb{F}_q$, and let $G$ be a split semisimple algebraic group over $\mathbb{F}_q$. Its dual group $\widehat{G}$ is a split reductive group over $\mathbb{Z}$. Conjecturally, any $l$-adic $\widehat{G}$-local system on $X$ (equivalently, any conjugacy class of continuous homomorphisms $\pi_1(X) \to \widehat{G}(\overline{\mathbb{Q}}_l)$) should be associated to an everywhere unramified automorphic representation of the group $G$. We show that for any homomorphism $\pi_1(X) \to \widehat{G}(\overline{\mathbb{Q}}_l)$ of Zariski dense image, there exists a finite Galois cover $Y \to X$ over which the associated local system becomes automorphic.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Energy Materials
ACS Applied Energy Materials Materials Science-Materials Chemistry
CiteScore
10.30
自引率
6.20%
发文量
1368
期刊介绍: ACS Applied Energy Materials is an interdisciplinary journal publishing original research covering all aspects of materials, engineering, chemistry, physics and biology relevant to energy conversion and storage. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important energy applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信