{"title":"利用无线电模块实现农业移动机器人局部导航的方法","authors":"R. Iakovlev, A. Saveliev","doi":"10.5937/TELFOR2002092I","DOIUrl":null,"url":null,"abstract":"In this paper an approach is presented, enabling to solve the problem of local navigation of mobile robotic platforms (MRP), based on utilization of wireless networks with mesh topology. Establishment of wireless networks was ensured, based on the set of radio modules, mounted on unmanned aerial vehicles (UAV), comprising a swarm. This paper presents a developed algorithm for establishment of such wireless networks, aided by LoRa-technology, as well as an algorithm for MRP localization, based on analysis of signal level, where the incoming signals are fed from MRP group radio modules to radio modules of wireless data transfer network. An algorithmic model is given for task distribution among UAV and to implement navigational capabilities of MRP swarm. In some experiments descending dependencies of absolute error value, pertinent to MRP, from the number of UAV in action were revealed, as well as of averaged deflection value of MRP positions in motion along their paths from the number of UAV in action. Thereby the averaged value of MRP localization error, depending on the number of UAV in action, was from 8.14 to 17.13 m, and the averaged value of MRP position deflection - from 16.38 to 57.12 m, respectively.","PeriodicalId":37719,"journal":{"name":"Telfor Journal","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Approach to implementation of local navigation of mobile robotic systems in agriculture with the aid of radio modules\",\"authors\":\"R. Iakovlev, A. Saveliev\",\"doi\":\"10.5937/TELFOR2002092I\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper an approach is presented, enabling to solve the problem of local navigation of mobile robotic platforms (MRP), based on utilization of wireless networks with mesh topology. Establishment of wireless networks was ensured, based on the set of radio modules, mounted on unmanned aerial vehicles (UAV), comprising a swarm. This paper presents a developed algorithm for establishment of such wireless networks, aided by LoRa-technology, as well as an algorithm for MRP localization, based on analysis of signal level, where the incoming signals are fed from MRP group radio modules to radio modules of wireless data transfer network. An algorithmic model is given for task distribution among UAV and to implement navigational capabilities of MRP swarm. In some experiments descending dependencies of absolute error value, pertinent to MRP, from the number of UAV in action were revealed, as well as of averaged deflection value of MRP positions in motion along their paths from the number of UAV in action. Thereby the averaged value of MRP localization error, depending on the number of UAV in action, was from 8.14 to 17.13 m, and the averaged value of MRP position deflection - from 16.38 to 57.12 m, respectively.\",\"PeriodicalId\":37719,\"journal\":{\"name\":\"Telfor Journal\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Telfor Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5937/TELFOR2002092I\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Telfor Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5937/TELFOR2002092I","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 4
摘要
本文提出了一种利用网状拓扑的无线网络解决移动机器人平台局部导航问题的方法。无线网络的建立是基于一组无线电模块,安装在无人驾驶飞行器(UAV)上,由一个群组成。本文提出了一种基于lora技术的建立无线网络的算法,以及一种基于信号电平分析的MRP定位算法,该算法将进入的信号从MRP组无线电模块馈送到无线数据传输网的无线电模块。给出了无人机间任务分配和MRP群导航能力实现的算法模型。在一些实验中,揭示了与MRP相关的绝对误差值与在行动的无人机数量的递减关系,以及MRP位置沿其路径运动的平均偏转值与在行动的无人机数量的递减关系。由此得到MRP定位误差随无人机数量的平均值分别为8.14 ~ 17.13 m, MRP位置偏转平均值分别为16.38 ~ 57.12 m。
Approach to implementation of local navigation of mobile robotic systems in agriculture with the aid of radio modules
In this paper an approach is presented, enabling to solve the problem of local navigation of mobile robotic platforms (MRP), based on utilization of wireless networks with mesh topology. Establishment of wireless networks was ensured, based on the set of radio modules, mounted on unmanned aerial vehicles (UAV), comprising a swarm. This paper presents a developed algorithm for establishment of such wireless networks, aided by LoRa-technology, as well as an algorithm for MRP localization, based on analysis of signal level, where the incoming signals are fed from MRP group radio modules to radio modules of wireless data transfer network. An algorithmic model is given for task distribution among UAV and to implement navigational capabilities of MRP swarm. In some experiments descending dependencies of absolute error value, pertinent to MRP, from the number of UAV in action were revealed, as well as of averaged deflection value of MRP positions in motion along their paths from the number of UAV in action. Thereby the averaged value of MRP localization error, depending on the number of UAV in action, was from 8.14 to 17.13 m, and the averaged value of MRP position deflection - from 16.38 to 57.12 m, respectively.
期刊介绍:
The TELFOR Journal is an open access international scientific journal publishing improved and extended versions of the selected best papers initially reported at the annual TELFOR Conference (www.telfor.rs), papers invited by the Editorial Board, and papers submitted by authors themselves for publishing. All papers are subject to reviewing. The TELFOR Journal is published in the English language, with both electronic and printed versions. Being an IEEE co-supported publication, it will follow all the IEEE rules and procedures. The TELFOR Journal covers all the essential branches of modern telecommunications and information technology: Telecommunications Policy and Services, Telecommunications Networks, Radio Communications, Communications Systems, Signal Processing, Optical Communications, Applied Electromagnetics, Applied Electronics, Multimedia, Software Tools and Applications, as well as other fields related to ICT. This large spectrum of topics accounts for the rapid convergence through telecommunications of the underlying technologies towards the information and knowledge society. The Journal provides a medium for exchanging research results and technological achievements accomplished by the scientific community from academia and industry.