抽样偏阶贝叶斯网络的结构发现

IF 4.3 3区 计算机科学 Q1 AUTOMATION & CONTROL SYSTEMS
NiinimäkiTeppo, ParviainenPekka, KoivistoMikko
{"title":"抽样偏阶贝叶斯网络的结构发现","authors":"NiinimäkiTeppo, ParviainenPekka, KoivistoMikko","doi":"10.5555/2946645.2946702","DOIUrl":null,"url":null,"abstract":"We present methods based on Metropolis-coupled Markov chain Monte Carlo (MC3) and annealed importance sampling (AIS) for estimating the posterior distribution of Bayesian networks. The methods draw...","PeriodicalId":50161,"journal":{"name":"Journal of Machine Learning Research","volume":"1 1","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2016-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Structure discovery in Bayesian networks by sampling partial orders\",\"authors\":\"NiinimäkiTeppo, ParviainenPekka, KoivistoMikko\",\"doi\":\"10.5555/2946645.2946702\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present methods based on Metropolis-coupled Markov chain Monte Carlo (MC3) and annealed importance sampling (AIS) for estimating the posterior distribution of Bayesian networks. The methods draw...\",\"PeriodicalId\":50161,\"journal\":{\"name\":\"Journal of Machine Learning Research\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2016-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Machine Learning Research\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.5555/2946645.2946702\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Machine Learning Research","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.5555/2946645.2946702","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 1

摘要

提出了基于大都市耦合马尔可夫链蒙特卡罗(MC3)和退火重要抽样(AIS)的贝叶斯网络后验分布估计方法。方法绘制…
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Structure discovery in Bayesian networks by sampling partial orders
We present methods based on Metropolis-coupled Markov chain Monte Carlo (MC3) and annealed importance sampling (AIS) for estimating the posterior distribution of Bayesian networks. The methods draw...
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Machine Learning Research
Journal of Machine Learning Research 工程技术-计算机:人工智能
CiteScore
18.80
自引率
0.00%
发文量
2
审稿时长
3 months
期刊介绍: The Journal of Machine Learning Research (JMLR) provides an international forum for the electronic and paper publication of high-quality scholarly articles in all areas of machine learning. All published papers are freely available online. JMLR has a commitment to rigorous yet rapid reviewing. JMLR seeks previously unpublished papers on machine learning that contain: new principled algorithms with sound empirical validation, and with justification of theoretical, psychological, or biological nature; experimental and/or theoretical studies yielding new insight into the design and behavior of learning in intelligent systems; accounts of applications of existing techniques that shed light on the strengths and weaknesses of the methods; formalization of new learning tasks (e.g., in the context of new applications) and of methods for assessing performance on those tasks; development of new analytical frameworks that advance theoretical studies of practical learning methods; computational models of data from natural learning systems at the behavioral or neural level; or extremely well-written surveys of existing work.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信