广义Hurwitz-Lerch zeta函数与广义Lambert变换

V. Kumar
{"title":"广义Hurwitz-Lerch zeta函数与广义Lambert变换","authors":"V. Kumar","doi":"10.7153/JCA-2020-17-05","DOIUrl":null,"url":null,"abstract":"Raina and Srivastava [20] introduced a generalized Lambert transform. Goyal and Laddha [8] have introduced generalizations of the Riemann zeta function and generalized Lambert transform. In the present paper, we introduce generalizations of the Hurwitz-Lerch zeta function and Lambert transform in a diverse direction. We derive generating functions involving generalized Hurwitz-Lerch zeta function. Connections between the generalized Lambert transform and generalized Hurwitz-Lerch zeta function are established. An inversion formula for the generalized Lambert transform is obtained. Some examples and special cases to illustrate our results are also mentioned.","PeriodicalId":73656,"journal":{"name":"Journal of classical analysis","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the generalized Hurwitz-Lerch zeta function and generalized Lambert transform\",\"authors\":\"V. Kumar\",\"doi\":\"10.7153/JCA-2020-17-05\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Raina and Srivastava [20] introduced a generalized Lambert transform. Goyal and Laddha [8] have introduced generalizations of the Riemann zeta function and generalized Lambert transform. In the present paper, we introduce generalizations of the Hurwitz-Lerch zeta function and Lambert transform in a diverse direction. We derive generating functions involving generalized Hurwitz-Lerch zeta function. Connections between the generalized Lambert transform and generalized Hurwitz-Lerch zeta function are established. An inversion formula for the generalized Lambert transform is obtained. Some examples and special cases to illustrate our results are also mentioned.\",\"PeriodicalId\":73656,\"journal\":{\"name\":\"Journal of classical analysis\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of classical analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7153/JCA-2020-17-05\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of classical analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7153/JCA-2020-17-05","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

Raina和Srivastava[20]引入了广义朗伯变换。Goyal和Laddha[8]介绍了黎曼ζ函数和广义朗伯特变换的推广。在本文中,我们在不同的方向上介绍了Hurwitz-Lerch zeta函数和Lambert变换的推广。导出了包含广义Hurwitz-Lerch zeta函数的生成函数。建立了广义Lambert变换与广义Hurwitz-Lerch zeta函数之间的联系。得到了广义朗伯变换的反演公式。文中还列举了一些例子和特殊情况来说明我们的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the generalized Hurwitz-Lerch zeta function and generalized Lambert transform
Raina and Srivastava [20] introduced a generalized Lambert transform. Goyal and Laddha [8] have introduced generalizations of the Riemann zeta function and generalized Lambert transform. In the present paper, we introduce generalizations of the Hurwitz-Lerch zeta function and Lambert transform in a diverse direction. We derive generating functions involving generalized Hurwitz-Lerch zeta function. Connections between the generalized Lambert transform and generalized Hurwitz-Lerch zeta function are established. An inversion formula for the generalized Lambert transform is obtained. Some examples and special cases to illustrate our results are also mentioned.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.00
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信