插值逼近:切比雪夫节点

M. Foupouagnigni, D. D. Tcheutia, W. Koepf, Kingsley Njem Forwa
{"title":"插值逼近:切比雪夫节点","authors":"M. Foupouagnigni, D. D. Tcheutia, W. Koepf, Kingsley Njem Forwa","doi":"10.7153/JCA-2020-17-04","DOIUrl":null,"url":null,"abstract":"In this paper, we first revisit the well-known result stating that the Hermite interpolation polynomials of a function f continuous on [−1,1] , with the zeros of the Chebyshev polynomials of the first kind as nodes, converge uniformly to f on [−1,1] . Then we extend this result to obtain the uniform convergence of the Hermite interpolation polynomials, with the nodes taken as the zeros of the Chebyshev polynomials of the second, third and fourth kind, not on the interval [−1,1] but rather on the intervals [− 2 √ 2 3 , 2 √ 2 3 ] , [− √ 3 2 ,1] , [−1, √ 3 2 ] , respectively.","PeriodicalId":73656,"journal":{"name":"Journal of classical analysis","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Approximation by interpolation: the Chebyshev nodes\",\"authors\":\"M. Foupouagnigni, D. D. Tcheutia, W. Koepf, Kingsley Njem Forwa\",\"doi\":\"10.7153/JCA-2020-17-04\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we first revisit the well-known result stating that the Hermite interpolation polynomials of a function f continuous on [−1,1] , with the zeros of the Chebyshev polynomials of the first kind as nodes, converge uniformly to f on [−1,1] . Then we extend this result to obtain the uniform convergence of the Hermite interpolation polynomials, with the nodes taken as the zeros of the Chebyshev polynomials of the second, third and fourth kind, not on the interval [−1,1] but rather on the intervals [− 2 √ 2 3 , 2 √ 2 3 ] , [− √ 3 2 ,1] , [−1, √ 3 2 ] , respectively.\",\"PeriodicalId\":73656,\"journal\":{\"name\":\"Journal of classical analysis\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of classical analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7153/JCA-2020-17-04\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of classical analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7153/JCA-2020-17-04","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们首先回顾了一个著名的结果,即函数f在[−1,1]上连续,以第一类切比雪夫多项式的零点为节点的Hermite插值多项式一致收敛于函数f在[−1,1]上。然后,我们推广了这一结果,得到了Hermite插值多项式的一致收敛性,其中第二类、第三类和第四类Chebyshev多项式的节点不是在区间[−1,1]上,而是在区间[−2√2,3,2√2,3],[−√2,1],[−1,√32]上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Approximation by interpolation: the Chebyshev nodes
In this paper, we first revisit the well-known result stating that the Hermite interpolation polynomials of a function f continuous on [−1,1] , with the zeros of the Chebyshev polynomials of the first kind as nodes, converge uniformly to f on [−1,1] . Then we extend this result to obtain the uniform convergence of the Hermite interpolation polynomials, with the nodes taken as the zeros of the Chebyshev polynomials of the second, third and fourth kind, not on the interval [−1,1] but rather on the intervals [− 2 √ 2 3 , 2 √ 2 3 ] , [− √ 3 2 ,1] , [−1, √ 3 2 ] , respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.00
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信